These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 29626891)

  • 1. Dynamic signatures of the transition from stacking disordered to hexagonal ice: Dielectric and nuclear magnetic resonance studies.
    Gainaru C; Vynokur E; Köster KW; Fuentes-Landete V; Spettel N; Zollner J; Loerting T; Böhmer R
    J Chem Phys; 2018 Apr; 148(13):134502. PubMed ID: 29626891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Free energy contributions and structural characterization of stacking disordered ices.
    Hudait A; Qiu S; Lupi L; Molinero V
    Phys Chem Chem Phys; 2016 Apr; 18(14):9544-53. PubMed ID: 26983558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal conductivity of normal and deuterated water, crystalline ice, and amorphous ices.
    Andersson O
    J Chem Phys; 2018 Sep; 149(12):124506. PubMed ID: 30278676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics enhanced by HCl doping triggers full Pauling entropy release at the ice XII-XIV transition.
    Köster KW; Fuentes-Landete V; Raidt A; Seidl M; Gainaru C; Loerting T; Böhmer R
    Nat Commun; 2015 Jun; 6():7349. PubMed ID: 26076946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amorphous and crystalline ices studied by dielectric spectroscopy.
    Plaga LJ; Raidt A; Fuentes Landete V; Amann-Winkel K; Massani B; Gasser TM; Gainaru C; Loerting T; Böhmer R
    J Chem Phys; 2019 Jun; 150(24):244501. PubMed ID: 31255070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of stacking disorder on thermal conductivity of cubic ice.
    Johari GP; Andersson O
    J Chem Phys; 2015 Aug; 143(5):054505. PubMed ID: 26254659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stacking disorder in ice I.
    Malkin TL; Murray BJ; Salzmann CG; Molinero V; Pickering SJ; Whale TF
    Phys Chem Chem Phys; 2015 Jan; 17(1):60-76. PubMed ID: 25380218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature-induced amorphisation of hexagonal ice.
    Handle PH; Loerting T
    Phys Chem Chem Phys; 2015 Feb; 17(7):5403-12. PubMed ID: 25613472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cubic ice Ic without stacking defects obtained from ice XVII.
    Del Rosso L; Celli M; Grazzi F; Catti M; Hansen TC; Fortes AD; Ulivi L
    Nat Mater; 2020 Jun; 19(6):663-668. PubMed ID: 32015533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into the Structure of Liquid Water from Nuclear Quantum Effects on the Density and Compressibility of Ice Polymorphs.
    Pamuk B; Allen PB; Fernández-Serra MV
    J Phys Chem B; 2018 May; 122(21):5694-5706. PubMed ID: 29490459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the phase transitions of high-pressure phases of ammonium fluoride and ice at ambient pressure.
    Sharif Z; Salzmann CG
    J Chem Phys; 2022 Jan; 156(1):014502. PubMed ID: 34998346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Small-angle water reorientations in KOH doped hexagonal ice and clathrate hydrates.
    Nelson H; Schildmann S; Nowaczyk A; Gainaru C; Geil B; Böhmer R
    Phys Chem Chem Phys; 2013 May; 15(17):6355-67. PubMed ID: 23525408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An ice phase of lowest thermal conductivity.
    Andersson O; Johari GP; Suga H
    J Chem Phys; 2004 May; 120(20):9612-7. PubMed ID: 15267973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Melting points and thermal expansivities of proton-disordered hexagonal ice with several model potentials.
    Koyama Y; Tanaka H; Gao G; Zeng XC
    J Chem Phys; 2004 Oct; 121(16):7926-31. PubMed ID: 15485255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Following the Crystallization of Amorphous Ice after Ultrafast Laser Heating.
    Ladd-Parada M; Amann-Winkel K; Kim KH; Späh A; Perakis F; Pathak H; Yang C; Mariedahl D; Eklund T; Lane TJ; You S; Jeong S; Weston M; Lee JH; Eom I; Kim M; Park J; Chun SH; Nilsson A
    J Phys Chem B; 2022 Mar; 126(11):2299-2307. PubMed ID: 35275642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Freezing, melting and structure of ice in a hydrophilic nanopore.
    Moore EB; de la Llave E; Welke K; Scherlis DA; Molinero V
    Phys Chem Chem Phys; 2010 Apr; 12(16):4124-34. PubMed ID: 20379503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of stacking disorder in ice nucleation.
    Lupi L; Hudait A; Peters B; Grünwald M; Gotchy Mullen R; Nguyen AH; Molinero V
    Nature; 2017 Nov; 551(7679):218-222. PubMed ID: 29120424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ice I
    Komatsu K; Machida S; Noritake F; Hattori T; Sano-Furukawa A; Yamane R; Yamashita K; Kagi H
    Nat Commun; 2020 Feb; 11(1):464. PubMed ID: 32015342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystallization, melting, and structure of water nanoparticles at atmospherically relevant temperatures.
    Johnston JC; Molinero V
    J Am Chem Soc; 2012 Apr; 134(15):6650-9. PubMed ID: 22452637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of ice crystallized from supercooled water.
    Malkin TL; Murray BJ; Brukhno AV; Anwar J; Salzmann CG
    Proc Natl Acad Sci U S A; 2012 Jan; 109(4):1041-5. PubMed ID: 22232652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.