These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
592 related articles for article (PubMed ID: 29626910)
21. Dynamics in crowded environments: is non-Gaussian Brownian diffusion normal? Kwon G; Sung BJ; Yethiraj A J Phys Chem B; 2014 Jul; 118(28):8128-34. PubMed ID: 24779432 [TBL] [Abstract][Full Text] [Related]
22. Structural relaxation of polydisperse hard spheres: comparison of the mode-coupling theory to a Langevin dynamics simulation. Weysser F; Puertas AM; Fuchs M; Voigtmann T Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011504. PubMed ID: 20866622 [TBL] [Abstract][Full Text] [Related]
23. Short-time diffusion in concentrated bidisperse hard-sphere suspensions. Wang M; Heinen M; Brady JF J Chem Phys; 2015 Feb; 142(6):064905. PubMed ID: 25681941 [TBL] [Abstract][Full Text] [Related]
24. Dynamics of a model colloidal suspension from dilute to freezing. Hannam SD; Daivis PJ; Bryant G Phys Rev E; 2016 Jul; 94(1-1):012619. PubMed ID: 27575191 [TBL] [Abstract][Full Text] [Related]
25. Absence of scaling for the intermediate scattering function of a hard-sphere suspension: static and dynamic x-ray scattering from concentrated polystyrene latex spheres. Lurio LB; Lumma D; Sandy AR; Borthwick MA; Falus P; Mochrie SG; Pelletier JF; Sutton M; Regan L; Malik A; Stephenson GB Phys Rev Lett; 2000 Jan; 84(4):785-8. PubMed ID: 11017372 [TBL] [Abstract][Full Text] [Related]
26. Relaxation dynamics of a viscous silica melt: the intermediate scattering functions. Horbach J; Kob W Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 1):041503. PubMed ID: 11690029 [TBL] [Abstract][Full Text] [Related]
28. Dynamics of concentrated hard-sphere colloids near a wall. Michailidou VN; Petekidis G; Swan JW; Brady JF Phys Rev Lett; 2009 Feb; 102(6):068302. PubMed ID: 19257641 [TBL] [Abstract][Full Text] [Related]
29. MD simulation of concentrated polymer solutions: structural relaxation near the glass transition. Peter S; Meyer H; Baschnagel J Eur Phys J E Soft Matter; 2009 Feb; 28(2):147-58. PubMed ID: 18850324 [TBL] [Abstract][Full Text] [Related]
30. "Dense diffusion" in colloidal glasses: short-ranged long-time self-diffusion as a mechanistic model for relaxation dynamics. Wang JG; Li Q; Peng X; McKenna GB; Zia RN Soft Matter; 2020 Aug; 16(31):7370-7389. PubMed ID: 32696798 [TBL] [Abstract][Full Text] [Related]
31. Long-time self-diffusion of charged colloidal particles: electrokinetic and hydrodynamic interaction effects. McPhie MG; Nägele G J Chem Phys; 2007 Jul; 127(3):034906. PubMed ID: 17655462 [TBL] [Abstract][Full Text] [Related]
32. Aspects of the dynamics of colloidal suspensions: further results of the mode-coupling theory of structural relaxation. Fuchs M; Mayr MR Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Nov; 60(5 Pt B):5742-52. PubMed ID: 11970470 [TBL] [Abstract][Full Text] [Related]
33. Mode coupling theory analysis of electrolyte solutions: Time dependent diffusion, intermediate scattering function, and ion solvation dynamics. Roy S; Yashonath S; Bagchi B J Chem Phys; 2015 Mar; 142(12):124502. PubMed ID: 25833591 [TBL] [Abstract][Full Text] [Related]
34. Simulation study of nonergodicity transitions: gelation in colloidal systems with short-range attractions. Puertas AM; Fuchs M; Cates ME Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 1):031406. PubMed ID: 12689066 [TBL] [Abstract][Full Text] [Related]
35. Short-time dynamics of lysozyme solutions with competing short-range attraction and long-range repulsion: Experiment and theory. Riest J; Nägele G; Liu Y; Wagner NJ; Godfrin PD J Chem Phys; 2018 Feb; 148(6):065101. PubMed ID: 29448794 [TBL] [Abstract][Full Text] [Related]
37. Self-motion and the alpha relaxation in a simulated glass-forming polymer: crossover from Gaussian to non-Gaussian dynamic behavior. Colmenero J; Alvarez F; Arbe A Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 1):041804. PubMed ID: 12005863 [TBL] [Abstract][Full Text] [Related]
38. Rotational and translational self-diffusion in concentrated suspensions of permeable particles. Abade GC; Cichocki B; Ekiel-Jezewska ML; Nägele G; Wajnryb E J Chem Phys; 2011 Jun; 134(24):244903. PubMed ID: 21721660 [TBL] [Abstract][Full Text] [Related]
39. Diffusion and sedimentation in colloidal suspensions using multiparticle collision dynamics with a discrete particle model. Wani YM; Kovakas PG; Nikoubashman A; Howard MP J Chem Phys; 2022 Jan; 156(2):024901. PubMed ID: 35032985 [TBL] [Abstract][Full Text] [Related]
40. Pair structure of the hard-sphere Yukawa fluid: an improved analytic method versus simulations, Rogers-Young scheme, and experiment. Heinen M; Holmqvist P; Banchio AJ; Nägele G J Chem Phys; 2011 Jan; 134(4):044532. PubMed ID: 21280773 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]