These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 29626913)

  • 1. Communication: Probing the interaction of infrared antenna arrays and molecular films with ultrafast quantum dynamics.
    Cohn B; Prasad AK; Chuntonov L
    J Chem Phys; 2018 Apr; 148(13):131101. PubMed ID: 29626913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiative Enhancement of Linear and Third-Order Vibrational Excitations by an Array of Infrared Plasmonic Antennas.
    Gandman A; Mackin RT; Cohn B; Rubtsov IV; Chuntonov L
    ACS Nano; 2018 May; 12(5):4521-4528. PubMed ID: 29727565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-Dimensional Fano Lineshapes in Ultrafast Vibrational Spectroscopy of Thin Molecular Layers on Plasmonic Arrays.
    Gandman A; Mackin R; Cohn B; Rubtsov IV; Chuntonov L
    J Phys Chem Lett; 2017 Jul; 8(14):3341-3346. PubMed ID: 28677974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-Dimensional Infrared Spectroscopy with Local Plasmonic Fields of a Trimer Gap-Antenna Array.
    Cohn B; Engelman B; Goldner A; Chuntonov L
    J Phys Chem Lett; 2018 Aug; 9(16):4596-4601. PubMed ID: 30044640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infrared Open Cavities for Strong Vibrational Coupling.
    Cohn B; Das K; Basu A; Chuntonov L
    J Phys Chem Lett; 2021 Jul; 12(29):7060-7066. PubMed ID: 34291931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fano-like resonances arising from long-lived molecule-plasmon interactions in colloidal nanoantennas.
    Frontiera RR; Gruenke NL; Van Duyne RP
    Nano Lett; 2012 Nov; 12(11):5989-94. PubMed ID: 23094821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface-enhanced ultrafast two-dimensional vibrational spectroscopy with engineered plasmonic nano-antennas.
    Chuntonov L; Rubtsov IV
    J Chem Phys; 2020 Aug; 153(5):050902. PubMed ID: 32770907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing and Exploiting the Interplay between Nuclear and Electronic Motion in Charge Transfer Processes.
    Delor M; Sazanovich IV; Towrie M; Weinstein JA
    Acc Chem Res; 2015 Apr; 48(4):1131-9. PubMed ID: 25789559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinguishing Population and Coherence Transfer Pathways in a Metal Dicarbonyl Complex Using Pulse-Shaped Two-Dimensional Infrared Spectroscopy.
    Marroux HJ; Orr-Ewing AJ
    J Phys Chem B; 2016 May; 120(17):4125-30. PubMed ID: 27070852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fano resonance resulting from a tunable interaction between molecular vibrational modes and a double continuum of a plasmonic metamolecule.
    Osley EJ; Biris CG; Thompson PG; Jahromi RR; Warburton PA; Panoiu NC
    Phys Rev Lett; 2013 Feb; 110(8):087402. PubMed ID: 23473201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spin-vibronic quantum dynamics for ultrafast excited-state processes.
    Eng J; Gourlaouen C; Gindensperger E; Daniel C
    Acc Chem Res; 2015 Mar; 48(3):809-17. PubMed ID: 25647179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relaxation-assisted two-dimensional infrared (RA 2DIR) method: accessing distances over 10 A and measuring bond connectivity patterns.
    Rubtsov IV
    Acc Chem Res; 2009 Sep; 42(9):1385-94. PubMed ID: 19462972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boosting infrared energy transfer in 3D nanoporous gold antennas.
    Garoli D; Calandrini E; Bozzola A; Ortolani M; Cattarin S; Barison S; Toma A; De Angelis F
    Nanoscale; 2017 Jan; 9(2):915-922. PubMed ID: 28000833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-dimensional infrared spectroscopy of metal carbonyls.
    Baiz CR; McRobbie PL; Anna JM; Geva E; Kubarych KJ
    Acc Chem Res; 2009 Sep; 42(9):1395-404. PubMed ID: 19453102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vibrational dynamics of hydrogen-bonded complexes in solutions studied with ultrafast infrared pump-probe spectroscopy.
    Banno M; Ohta K; Yamaguchi S; Hirai S; Tominaga K
    Acc Chem Res; 2009 Sep; 42(9):1259-69. PubMed ID: 19754112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection.
    Neubrech F; Pucci A; Cornelius TW; Karim S; García-Etxarri A; Aizpurua J
    Phys Rev Lett; 2008 Oct; 101(15):157403. PubMed ID: 18999639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrafast vibrational excitation transfer on resonant antenna lattices revealed by two-dimensional infrared spectroscopy.
    Cohn B; Sufrin S; Chuntonov L
    J Chem Phys; 2022 Mar; 156(12):121101. PubMed ID: 35364858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-wavelength mid-infrared plasmonic antennas with single nanoscale focal point.
    Blanchard R; Boriskina SV; Genevet P; Kats MA; Tetienne JP; Yu N; Scully MO; Dal Negro L; Capasso F
    Opt Express; 2011 Oct; 19(22):22113-24. PubMed ID: 22109055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-dimensional infrared spectroscopy of intermolecular hydrogen bonds in the condensed phase.
    Elsaesser T
    Acc Chem Res; 2009 Sep; 42(9):1220-8. PubMed ID: 19425543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Communication: Probing non-equilibrium vibrational relaxation pathways of highly excited C≡N stretching modes following ultrafast back-electron transfer.
    Lynch MS; Slenkamp KM; Khalil M
    J Chem Phys; 2012 Jun; 136(24):241101. PubMed ID: 22755557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.