These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 29627984)

  • 1. OH Radical as a Probe of the Spin Polarizability in 1- and 2-Naphthol.
    Albarran G; Rassolov VA; Schuler RH
    J Phys Chem A; 2018 Apr; 122(16):4015-4022. PubMed ID: 29627984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydroxyl radical as a probe of the charge distribution in aromatics: phenol.
    Albarran G; Schuler RH
    J Phys Chem A; 2007 Apr; 111(13):2507-10. PubMed ID: 17388332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concerted effects of substituents in the reaction of .OH radicals with aromatics: the cresols.
    Albarran G; Schuler RH
    J Phys Chem A; 2005 Oct; 109(41):9363-70. PubMed ID: 16833279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural study of 1- and 2-naphthol: new insights into the non-covalent H-H interaction in
    Hazrah AS; Nanayakkara S; Seifert NA; Kraka E; Jäger W
    Phys Chem Chem Phys; 2022 Feb; 24(6):3722-3732. PubMed ID: 35080568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping the influence of molecular structure on rates of electron transfer using direct measurements of the electron spin-spin exchange interaction.
    Lukas AS; Bushard PJ; Weiss EA; Wasielewski MR
    J Am Chem Soc; 2003 Apr; 125(13):3921-30. PubMed ID: 12656627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidation reactions of 1- and 2-naphthols: an experimental and theoretical study.
    Sreekanth R; Prasanthkumar KP; Sunil Paul MM; Aravind UK; Aravindakumar CT
    J Phys Chem A; 2013 Nov; 117(44):11261-70. PubMed ID: 24093754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Basis set and electron correlation effects on the polarizability and second hyperpolarizability of model open-shell pi-conjugated systems.
    Champagne B; Botek E; Nakano M; Nitta T; Yamaguchi K
    J Chem Phys; 2005 Mar; 122(11):114315. PubMed ID: 15839724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cucurbit[5]uril-metal complex-induced room-temperature phosphorescence of α-naphthol and β-naphthol.
    Gao ZW; Feng X; Mu L; Ni XL; Liang LL; Xue SF; Tao Z; Zeng X; Chapman BE; Kuchel PW; Lindoy LF; Wei G
    Dalton Trans; 2013 Feb; 42(7):2608-15. PubMed ID: 23223643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct photooxidation and xanthene-sensitized oxidation of naphthols: quantum yields and mechanism.
    Oelgemöller M; Mattay J; Görner H
    J Phys Chem A; 2011 Jan; 115(3):280-5. PubMed ID: 21162586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of Radical Bridges on Electron Spin Coupling.
    Steenbock T; Shultz DA; Kirk ML; Herrmann C
    J Phys Chem A; 2017 Jan; 121(1):216-225. PubMed ID: 27997189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photochemistry of 1- and 2-Naphthols and Their Water Clusters: The Role of
    Novak J; Prlj A; Basarić N; Corminboeuf C; Došlić N
    Chemistry; 2017 Jun; 23(34):8244-8251. PubMed ID: 28370457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collisional activation mass spectra of M-. ions of azo dyes containing 2-naphthol.
    Brumley WC; Brilis GM; Calvey RJ; Sphon JA
    Biomed Environ Mass Spectrom; 1989 Jun; 18(6):394-400. PubMed ID: 2765698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Matrix isolation FT-IR and theoretical DFT/B3LYP spectrum of 1-naphthol.
    Muzomwe M; Boeckx B; Maes G; Kasende OE
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 May; 108():14-9. PubMed ID: 23454709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. OH-induced free radicals in 3'-UMP and poly(U): spin-trapping and radical chromatography.
    Inanami O; Kuwabara M; Sato F
    Radiat Res; 1987 Oct; 112(1):36-44. PubMed ID: 2821571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of naphthalene derivatives with lipids in membranes studied by the 1H-nuclear Overhauser effect and molecular dynamics simulation.
    Shintani M; Matsuo Y; Sakuraba S; Matubayasi N
    Phys Chem Chem Phys; 2012 Oct; 14(40):14049-60. PubMed ID: 22983117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous sorption of crystal violet and 2-naphthol to bentonite with different CECs.
    Wei J; Zhu R; Zhu J; Ge F; Yuan P; He H; Ming C
    J Hazard Mater; 2009 Jul; 166(1):195-9. PubMed ID: 19095351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EPR parameters of radical ions and polarizability effect.
    Egorochkin AN; Kuznetsova OV; Khamaletdinova NM; Domratcheva-Lvova LG
    Magn Reson Chem; 2011 Apr; 49(4):175-83. PubMed ID: 21391241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proton transfer from 2-naphthol to aliphatic amines in supercritical CO2.
    Simoncelli S; Hoijemberg PA; Japas ML; Aramendía PF
    J Phys Chem A; 2011 Dec; 115(50):14243-8. PubMed ID: 22082296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The alternating of substituent effect on the ¹³C NMR shifts of all bridge carbons in cinnamyl aniline derivatives.
    Chen G; Cao C; Zhu Y; Wu Z; Wu X
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Dec; 99():218-22. PubMed ID: 23078788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Infrared and electronic spectra of radicals produced from 2-naphthol and carbazole by UV-induced hydrogen-atom eliminations.
    Sekine M; Sekiya H; Nakata M
    J Phys Chem A; 2012 Sep; 116(36):8980-8. PubMed ID: 22909084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.