These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1237 related articles for article (PubMed ID: 29628199)
1. Genome editing using CRISPR/Cas9-targeted mutagenesis: An opportunity for yield improvements of crop plants grown under environmental stresses. Abdelrahman M; Al-Sadi AM; Pour-Aboughadareh A; Burritt DJ; Tran LP Plant Physiol Biochem; 2018 Oct; 131():31-36. PubMed ID: 29628199 [TBL] [Abstract][Full Text] [Related]
2. CRISPR/Cas: A powerful tool for gene function study and crop improvement. Zhang D; Zhang Z; Unver T; Zhang B J Adv Res; 2021 Mar; 29():207-221. PubMed ID: 33842017 [TBL] [Abstract][Full Text] [Related]
3. The CRISPR/Cas9 system and its applications in crop genome editing. Bao A; Burritt DJ; Chen H; Zhou X; Cao D; Tran LP Crit Rev Biotechnol; 2019 May; 39(3):321-336. PubMed ID: 30646772 [TBL] [Abstract][Full Text] [Related]
4. CRISPR/Cas9 opens new horizon of crop improvement under stress condition. Patra S; Chatterjee D; Basak S; Sen S; Mandal A Biochim Biophys Acta Gen Subj; 2024 Oct; 1868(10):130685. PubMed ID: 39079650 [TBL] [Abstract][Full Text] [Related]
5. Modern Trends in Plant Genome Editing: An Inclusive Review of the CRISPR/Cas9 Toolbox. Razzaq A; Saleem F; Kanwal M; Mustafa G; Yousaf S; Imran Arshad HM; Hameed MK; Khan MS; Joyia FA Int J Mol Sci; 2019 Aug; 20(16):. PubMed ID: 31430902 [TBL] [Abstract][Full Text] [Related]
6. A Critical Review: Recent Advancements in the Use of CRISPR/Cas9 Technology to Enhance Crops and Alleviate Global Food Crises. Rasheed A; Gill RA; Hassan MU; Mahmood A; Qari S; Zaman QU; Ilyas M; Aamer M; Batool M; Li H; Wu Z Curr Issues Mol Biol; 2021 Nov; 43(3):1950-1976. PubMed ID: 34889892 [TBL] [Abstract][Full Text] [Related]
7. Induced mutation and epigenetics modification in plants for crop improvement by targeting CRISPR/Cas9 technology. Khan MHU; Khan SU; Muhammad A; Hu L; Yang Y; Fan C J Cell Physiol; 2018 Jun; 233(6):4578-4594. PubMed ID: 29194606 [TBL] [Abstract][Full Text] [Related]
8. CRISPR/Cas tool designs for multiplex genome editing and its applications in developing biotic and abiotic stress-resistant crop plants. Singh J; Sharma D; Brar GS; Sandhu KS; Wani SH; Kashyap R; Kour A; Singh S Mol Biol Rep; 2022 Dec; 49(12):11443-11467. PubMed ID: 36002653 [TBL] [Abstract][Full Text] [Related]
9. Towards CRISPR/Cas crops - bringing together genomics and genome editing. Scheben A; Wolter F; Batley J; Puchta H; Edwards D New Phytol; 2017 Nov; 216(3):682-698. PubMed ID: 28762506 [TBL] [Abstract][Full Text] [Related]
10. Evolution in crop improvement approaches and future prospects of molecular markers to CRISPR/Cas9 system. Dheer P; Rautela I; Sharma V; Dhiman M; Sharma A; Sharma N; Sharma MD Gene; 2020 Aug; 753():144795. PubMed ID: 32450202 [TBL] [Abstract][Full Text] [Related]
11. Engineering abiotic stress tolerance via CRISPR/ Cas-mediated genome editing. Zafar SA; Zaidi SS; Gaba Y; Singla-Pareek SL; Dhankher OP; Li X; Mansoor S; Pareek A J Exp Bot; 2020 Jan; 71(2):470-479. PubMed ID: 31644801 [TBL] [Abstract][Full Text] [Related]
12. Adoption of CRISPR-Cas for crop production: present status and future prospects. Akanmu AO; Asemoloye MD; Marchisio MA; Babalola OO PeerJ; 2024; 12():e17402. PubMed ID: 38860212 [TBL] [Abstract][Full Text] [Related]
13. CRISPR/Cas9 for development of disease resistance in plants: recent progress, limitations and future prospects. Ahmad S; Wei X; Sheng Z; Hu P; Tang S Brief Funct Genomics; 2020 Jan; 19(1):26-39. PubMed ID: 31915817 [TBL] [Abstract][Full Text] [Related]
14. Potential Application of CRISPR/Cas9 System to Engineer Abiotic Stress Tolerance in Plants. Ahmed T; Noman M; Shahid M; Muhammad S; Tahir Ul Qamar M; Ali MA; Maqsood A; Hafeez R; Ogunyemi SO; Li B Protein Pept Lett; 2021; 28(8):861-877. PubMed ID: 33602066 [TBL] [Abstract][Full Text] [Related]
15. CRISPR/Cas9 in plants: at play in the genome and at work for crop improvement. Hussain B; Lucas SJ; Budak H Brief Funct Genomics; 2018 Sep; 17(5):319-328. PubMed ID: 29912293 [TBL] [Abstract][Full Text] [Related]
16. Genetically modified crop regulations: scope and opportunity using the CRISPR-Cas9 genome editing approach. Gupta S; Kumar A; Patel R; Kumar V Mol Biol Rep; 2021 May; 48(5):4851-4863. PubMed ID: 34114124 [TBL] [Abstract][Full Text] [Related]
17. CRISPR/Cas9 mediated genome editing tools and their possible role in disease resistance mechanism. Kumari D; Prasad BD; Dwivedi P; Hidangmayum A; Sahni S Mol Biol Rep; 2022 Dec; 49(12):11587-11600. PubMed ID: 36104588 [TBL] [Abstract][Full Text] [Related]
18. CRISPR-Based Genome Editing: Advancements and Opportunities for Rice Improvement. Zegeye WA; Tsegaw M; Zhang Y; Cao L Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457271 [TBL] [Abstract][Full Text] [Related]
19. Genome Editing in Cereals: Approaches, Applications and Challenges. Ansari WA; Chandanshive SU; Bhatt V; Nadaf AB; Vats S; Katara JL; Sonah H; Deshmukh R Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32516948 [TBL] [Abstract][Full Text] [Related]
20. The Development of Herbicide Resistance Crop Plants Using CRISPR/Cas9-Mediated Gene Editing. Dong H; Huang Y; Wang K Genes (Basel); 2021 Jun; 12(6):. PubMed ID: 34204760 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]