These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 29628237)

  • 1. In situ observation of gelation of methylcellulose aqueous solution with viscosity measuring instrument in the diamond anvil cell.
    Wang Z; Yang K; Li H; Yuan C; Zhu X; Huang H; Wang Y; Su L; Nishinari K; Fang Y
    Carbohydr Polym; 2018 Jun; 190():190-195. PubMed ID: 29628237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ observation of heat- and pressure-induced gelation of methylcellulose by fluorescence measurement.
    Su L; Wang Z; Yang K; Minamikawa Y; Kometani N; Nishinari K
    Int J Biol Macromol; 2014 Mar; 64():409-14. PubMed ID: 24361668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ observation of sol-gel transition of agarose aqueous solution by fluorescence measurement.
    Wang Z; Yang K; Li H; Yuan C; Zhu X; Huang H; Wang Y; Su L; Fang Y
    Int J Biol Macromol; 2018 Jun; 112():803-808. PubMed ID: 29425863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Situ Observations of Thermoreversible Gelation and Phase Separation of Agarose and Methylcellulose Solutions under High Pressure.
    Kometani N; Tanabe M; Su L; Yang K; Nishinari K
    J Phys Chem B; 2015 Jun; 119(22):6878-83. PubMed ID: 25984597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effect of storage temperature on gelation of oral methylcellulose formulation].
    Shimoyama T; Miyagi Y; Itoh K; Kobayashi M
    Yakugaku Zasshi; 2013; 133(6):719-25. PubMed ID: 23728095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aggregation of modified celluloses in aqueous solution: transition from methylcellulose to hydroxypropylmethylcellulose solution properties induced by a low-molecular-weight oxyethylene additive.
    Bodvik R; Karlson L; Edwards K; Eriksson J; Thormann E; Claesson PM
    Langmuir; 2012 Sep; 28(38):13562-9. PubMed ID: 22931403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oral liquid in situ gelling methylcellulose/alginate formulations for sustained drug delivery to dysphagic patients.
    Shimoyama T; Itoh K; Kobayashi M; Miyazaki S; D'Emanuele A; Attwood D
    Drug Dev Ind Pharm; 2012 Aug; 38(8):952-60. PubMed ID: 22283456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase behavior of concentrated hydroxypropyl methylcellulose solution in the presence of mono and divalent salt.
    Almeida N; Rakesh L; Zhao J
    Carbohydr Polym; 2014 Jan; 99():630-7. PubMed ID: 24274553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The shear dependence of the methylcellulose gelation phenomena in aqueous solution and in ceramic paste.
    Knarr M; Bayer R
    Carbohydr Polym; 2014 Oct; 111():80-8. PubMed ID: 25037332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Salt-assisted and salt-suppressed sol-gel transitions of methylcellulose in water.
    Xu Y; Wang C; Tam KC; Li L
    Langmuir; 2004 Feb; 20(3):646-52. PubMed ID: 15773087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic effect of salt mixture on the gelation temperature and morphology of methylcellulose hydrogel.
    Bain MK; Bhowmick B; Maity D; Mondal D; Mollick MM; Rana D; Chattopadhyay D
    Int J Biol Macromol; 2012 Dec; 51(5):831-6. PubMed ID: 22884434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unique gelation behavior of cellulose in NaOH/urea aqueous solution.
    Cai J; Zhang L
    Biomacromolecules; 2006 Jan; 7(1):183-9. PubMed ID: 16398514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring the thermal gelation of cellulose ethers in situ using attenuated total reflectance fourier transform infrared spectroscopy.
    Banks SR; Sammon C; Melia CD; Timmins P
    Appl Spectrosc; 2005 Apr; 59(4):452-9. PubMed ID: 15901330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of solvent state and isothermal conditions on gelation of methylcellulose hydrogels.
    Joshi SC; Liang CM; Lam YC
    J Biomater Sci Polym Ed; 2008; 19(12):1611-23. PubMed ID: 19017474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controllable gelation of methylcellulose by a salt mixture.
    Xu Y; Li L; Zheng P; Lam YC; Hu X
    Langmuir; 2004 Jul; 20(15):6134-8. PubMed ID: 15248695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal gelation of aqueous hydroxypropylmethylcellulose solutions with SDS and hydrophobic drug particles.
    Acevedo A; Takhistov P; de la Rosa CP; Florián V
    Carbohydr Polym; 2014 Feb; 102():74-9. PubMed ID: 24507257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rheological characterization of cellulosic and alginate polymers.
    Duggirala S; Deluca PP
    PDA J Pharm Sci Technol; 1996; 50(5):290-6. PubMed ID: 8973114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A thermoreversible double gel: characterization of a methylcellulose and kappa-carrageenan mixed system in water by SAXS, DSC and rheology.
    Tomsic M; Prossnigg F; Glatter O
    J Colloid Interface Sci; 2008 Jun; 322(1):41-50. PubMed ID: 18417143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interplay between gelation and phase separation in aqueous solutions of methylcellulose and hydroxypropylmethylcellulose.
    Fairclough JP; Yu H; Kelly O; Ryan AJ; Sammler RL; Radler M
    Langmuir; 2012 Jul; 28(28):10551-7. PubMed ID: 22694273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rheological behaviors and miscibility of mixture solution of polyaniline and cellulose dissolved in an aqueous system.
    Shi X; Lu A; Cai J; Zhang L; Zhang H; Li J; Wang X
    Biomacromolecules; 2012 Aug; 13(8):2370-8. PubMed ID: 22715951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.