These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 29628310)

  • 1. Gcn4 Binding in Coding Regions Can Activate Internal and Canonical 5' Promoters in Yeast.
    Rawal Y; Chereji RV; Valabhoju V; Qiu H; Ocampo J; Clark DJ; Hinnebusch AG
    Mol Cell; 2018 Apr; 70(2):297-311.e4. PubMed ID: 29628310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct functions of three chromatin remodelers in activator binding and preinitiation complex assembly.
    Rawal Y; Qiu H; Hinnebusch AG
    PLoS Genet; 2022 Jul; 18(7):e1010277. PubMed ID: 35793348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mediator, TATA-binding protein, and RNA polymerase II contribute to low histone occupancy at active gene promoters in yeast.
    Ansari SA; Paul E; Sommer S; Lieleg C; He Q; Daly AZ; Rode KA; Barber WT; Ellis LC; LaPorta E; Orzechowski AM; Taylor E; Reeb T; Wong J; Korber P; Morse RH
    J Biol Chem; 2014 May; 289(21):14981-95. PubMed ID: 24727477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A systematic genome-wide account of binding sites for the model transcription factor Gcn4.
    Coey CT; Clark DJ
    Genome Res; 2022 Feb; 32(2):367-377. PubMed ID: 34916251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Paf1 restricts Gcn4 occupancy and antisense transcription at the ARG1 promoter.
    Crisucci EM; Arndt KM
    Mol Cell Biol; 2012 Mar; 32(6):1150-63. PubMed ID: 22252319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TATA-binding protein activates transcription when upstream of a GCN4-binding site in a novel yeast promoter.
    Brandl CJ; Martens JA; Liaw PC; Furlanetto AM; Wobbe CR
    J Biol Chem; 1992 Oct; 267(29):20943-52. PubMed ID: 1400410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sumoylation of transcription factor Gcn4 facilitates its Srb10-mediated clearance from promoters in yeast.
    Rosonina E; Duncan SM; Manley JL
    Genes Dev; 2012 Feb; 26(4):350-5. PubMed ID: 22345516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ssb2 is a novel factor in regulating synthesis and degradation of Gcn4 in Saccharomyces cerevisiae.
    Jung Y; Seong KM; Baek JH; Kim J
    Mol Microbiol; 2018 Dec; 110(5):728-740. PubMed ID: 30039896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A feedback circuit between transcriptional activation and self-destruction of Gcn4 separates its metabolic and morphogenic response in diploid yeasts.
    Herzog B; Streckfuss-Bömeke K; Braus GH
    J Mol Biol; 2011 Jan; 405(4):909-25. PubMed ID: 21111745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The transcription factor GCN4 regulates PHM8 and alters triacylglycerol metabolism in Saccharomyces cerevisiae.
    Yadav KK; Rajasekharan R
    Curr Genet; 2016 Nov; 62(4):841-851. PubMed ID: 26979516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gln3-Gcn4 hybrid transcriptional activator determines catabolic and biosynthetic gene expression in the yeast Saccharomyces cerevisiae.
    Hernández H; Aranda C; Riego L; González A
    Biochem Biophys Res Commun; 2011 Jan; 404(3):859-64. PubMed ID: 21184740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromatin Association of Gcn4 Is Limited by Post-translational Modifications Triggered by its DNA-Binding in Saccharomyces cerevisiae.
    Akhter A; Rosonina E
    Genetics; 2016 Dec; 204(4):1433-1445. PubMed ID: 27770033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Gcn4 transcription factor reduces protein synthesis capacity and extends yeast lifespan.
    Mittal N; Guimaraes JC; Gross T; Schmidt A; Vina-Vilaseca A; Nedialkova DD; Aeschimann F; Leidel SA; Spang A; Zavolan M
    Nat Commun; 2017 Sep; 8(1):457. PubMed ID: 28878244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The TAF9 C-terminal conserved region domain is required for SAGA and TFIID promoter occupancy to promote transcriptional activation.
    Saint M; Sawhney S; Sinha I; Singh RP; Dahiya R; Thakur A; Siddharthan R; Natarajan K
    Mol Cell Biol; 2014 May; 34(9):1547-63. PubMed ID: 24550006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of Mediator recruitment by tandem Gcn4 activation domains and three Gal11 activator-binding domains.
    Herbig E; Warfield L; Fish L; Fishburn J; Knutson BA; Moorefield B; Pacheco D; Hahn S
    Mol Cell Biol; 2010 May; 30(10):2376-90. PubMed ID: 20308326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-scale reconstruction of Gcn4/ATF4 networks driving a growth program.
    Srinivasan R; Walvekar AS; Rashida Z; Seshasayee A; Laxman S
    PLoS Genet; 2020 Dec; 16(12):e1009252. PubMed ID: 33378328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Truncated variants of the GCN4 transcription activator protein bind DNA with dramatically different dynamical motifs.
    McHarris DM; Barr DA
    J Chem Inf Model; 2014 Oct; 54(10):2869-75. PubMed ID: 25204850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromatin opening and transactivator potentiation by RAP1 in Saccharomyces cerevisiae.
    Yu L; Morse RH
    Mol Cell Biol; 1999 Aug; 19(8):5279-88. PubMed ID: 10409719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sumoylation of DNA-bound transcription factor Sko1 prevents its association with nontarget promoters.
    Sri Theivakadadcham VS; Bergey BG; Rosonina E
    PLoS Genet; 2019 Feb; 15(2):e1007991. PubMed ID: 30763307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation-induced disruption of nucleosome position clusters on the coding regions of Gcn4-dependent genes extends into neighbouring genes.
    Cole HA; Howard BH; Clark DJ
    Nucleic Acids Res; 2011 Dec; 39(22):9521-35. PubMed ID: 21880600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.