BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 29628362)

  • 21. Hydrometallurgical recovery of heavy metals from low grade automobile shredder residue (ASR): An application of advanced Fenton process (AFP).
    Singh J; Lee BK
    J Environ Manage; 2015 Sep; 161():1-10. PubMed ID: 26143080
    [TBL] [Abstract][Full Text] [Related]  

  • 22. End-of-Life Vehicles management: Italian material and energy recovery efficiency.
    Santini A; Morselli L; Passarini F; Vassura I; Di Carlo S; Bonino F
    Waste Manag; 2011 Mar; 31(3):489-94. PubMed ID: 20943364
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Waste conversion into high-value ceramics: Carbothermal nitridation synthesis of titanium nitride nanoparticles using automotive shredder waste.
    Mayyas M; Pahlevani F; Maroufi S; Liu Z; Sahajwalla V
    J Environ Manage; 2017 Mar; 188():32-42. PubMed ID: 27923163
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pollution control and metal resource recovery for low grade automobile shredder residue: a mechanism, bioavailability and risk assessment.
    Singh J; Lee BK
    Waste Manag; 2015 Apr; 38():271-83. PubMed ID: 25690411
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Automobile Shredder Residues in Italy: characterization and valorization opportunities.
    Fiore S; Ruffino B; Zanetti MC
    Waste Manag; 2012 Aug; 32(8):1548-59. PubMed ID: 22525092
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of oxygen, catalyst and PVC on the formation of PCDDs, PCDFs and dioxin-like PCBs in pyrolysis products of automobile residues.
    Joung HT; Seo YC; Kim KH; Seo YC
    Chemosphere; 2006 Nov; 65(9):1481-9. PubMed ID: 16740293
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enabling the recycling of metals from the shredder light fraction derived from waste of electrical and electronic equipment via continuous pyrolysis process.
    Diaz F; Latacz D; Friedrich B
    Waste Manag; 2023 Dec; 172():335-346. PubMed ID: 37948829
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Conversion of microwave pyrolysed ASR's char using high temperature agents.
    Donaj P; Blasiak W; Yang W; Forsgren C
    J Hazard Mater; 2011 Jan; 185(1):472-81. PubMed ID: 20940079
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantitative analysis and reduction of the eco-toxicity risk of heavy metals for the fine fraction of automobile shredder residue (ASR) using H2O2.
    Singh J; Yang JK; Chang YY
    Waste Manag; 2016 Feb; 48():374-382. PubMed ID: 26482807
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Py-FTIR-GC/MS Analysis of Volatile Products of Automobile Shredder Residue Pyrolysis.
    Yang B; Chen M
    Polymers (Basel); 2020 Nov; 12(11):. PubMed ID: 33217995
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pyrolysis and gasification-melting of automobile shredder residue.
    Roh SA; Kim WH; Yun JH; Min TJ; Kwak YH; Seo YC
    J Air Waste Manag Assoc; 2013 Oct; 63(10):1137-47. PubMed ID: 24282966
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of Interactions among Polymeric Components of Automobile Shredder Residue on the Pyrolysis Temperature and Characterization of Pyrolytic Products.
    Yang B; Chen M
    Polymers (Basel); 2020 Jul; 12(8):. PubMed ID: 32731581
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Co-combustion of shredder residues and municipal solid waste in a Swedish municipal solid waste incinerator.
    Redin LA; Hjelt M; Marklund S
    Waste Manag Res; 2001 Dec; 19(6):518-25. PubMed ID: 12201681
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conventional and fast pyrolysis of automobile shredder residues (ASR).
    Zolezzi M; Nicolella C; Ferrara S; Iacobucci C; Rovatti M
    Waste Manag; 2004; 24(7):691-9. PubMed ID: 15288301
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Utilization of automotive shredder residues in a thermal process for recovery of manganese and zinc from zinc-carbon and alkaline spent batteries.
    Ippolito NM; Belardi G; Medici F; Piga L
    Waste Manag; 2016 May; 51():182-189. PubMed ID: 26777778
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Life cycle assessment of innovative technology for energy production from automotive shredder residue.
    Rinaldi C; Masoni P; Salvati F; Tolve P
    Integr Environ Assess Manag; 2015 Jul; 11(3):435-44. PubMed ID: 25930669
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recycling of auto shredder residue.
    Nourreddine M
    J Hazard Mater; 2007 Jan; 139(3):481-90. PubMed ID: 16600493
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recycling of a fine, heavy fluff automobile shredder residue by density and differential fragmentation.
    Gent MR; Menéndez M; Muñiz H; Torno S
    Waste Manag; 2015 Sep; 43():421-33. PubMed ID: 26119010
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pretreatment of automobile shredder residue (ASR) for fuel utilization.
    Hwang IH; Yokono S; Matsuto T
    Chemosphere; 2008 Mar; 71(5):879-85. PubMed ID: 18166213
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimization of wet shaking table process using response surface methodology applied to the separation of copper and aluminum from the fine fraction of shredder ELVs.
    Jordão H; Sousa AJ; Carvalho MT
    Waste Manag; 2016 Feb; 48():366-373. PubMed ID: 26470828
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.