BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 29628362)

  • 41. Pyrolysis of Automotive Shredder Residue (ASR): Thermogravimetry, In-Situ Synchrotron IR and Gas-Phase IR of Polymeric Components.
    Kohli I; Srivatsa SC; Das O; Devasahayam S; Singh Raman RK; Bhattacharya S
    Polymers (Basel); 2023 Sep; 15(17):. PubMed ID: 37688277
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A mini-review of the physical recycling methods for plastic parts in end-of-life vehicles.
    Martinez Sanz V; Morales Serrano A; Schlummer M
    Waste Manag Res; 2022 Dec; 40(12):1757-1765. PubMed ID: 35708148
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Analysis of lead content in automotive shredder residue (ASR).
    Gonzalez-Fernandez O; Pessanha S; Queralt I; Carvalho ML
    Waste Manag; 2009 Sep; 29(9):2549-52. PubMed ID: 19493667
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Heavy metals removal from automobile shredder residues (ASR).
    Kurose K; Okuda T; Nishijima W; Okada M
    J Hazard Mater; 2006 Oct; 137(3):1618-23. PubMed ID: 16797833
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Environmentally friendly approach for the recovery of metallic fraction from waste printed circuit boards using pyrolysis and ultrasonication.
    Jadhao PR; Ahmad E; Pant KK; Nigam KDP
    Waste Manag; 2020 Dec; 118():150-160. PubMed ID: 32892092
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Feasibility study on co-processing of automobile shredder residue in coal-fired power plants via pyrolysis.
    Ren Y; Cao C; Cheng Y; Hu H; Liu H; Li X; Liu H; Yao H
    Waste Manag; 2022 Apr; 143():135-143. PubMed ID: 35255447
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Novel synthesis and applications of Thiomer solidification for heavy metals immobilization in hazardous ASR/ISW thermal residue.
    Baek JW; Mallampati SR; Park HS
    Waste Manag; 2016 Mar; 49():181-187. PubMed ID: 26777552
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evaluation of heavy metals in hazardous automobile shredder residue thermal residue and immobilization with novel nano-size calcium dispersed reagent.
    Lee CH; Truc NTT; Lee BK; Mitoma Y; Mallampati SR
    J Hazard Mater; 2015 Oct; 296():239-247. PubMed ID: 25935297
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Selective sequential separation of ABS/HIPS and PVC from automobile and electronic waste shredder residue by hybrid nano-Fe/Ca/CaO assisted ozonisation process.
    Mallampati SR; Lee BH; Mitoma Y; Simion C
    Waste Manag; 2017 Feb; 60():428-438. PubMed ID: 28089400
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Viability study of automobile shredder residue as fuel.
    Edo M; Aracil I; Font R; Anzano M; Fullana A; Collina E
    J Hazard Mater; 2013 Sep; 260():819-24. PubMed ID: 23856312
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Upgrading of automobile shredder residue via innovative granulation process 'ReGran'.
    Holthaus P; Kappes M; Krumm W
    Waste Manag Res; 2017 Jan; 35(1):110-119. PubMed ID: 27881804
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Stocks, Flows, and Distribution of Critical Metals in Embedded Electronics in Passenger Vehicles.
    Restrepo E; Løvik AN; Wäger P; Widmer R; Lonka R; Müller DB
    Environ Sci Technol; 2017 Feb; 51(3):1129-1139. PubMed ID: 28099815
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fast Pyrolysis Behavior of Banagrass as a Function of Temperature and Volatiles Residence Time in a Fluidized Bed Reactor.
    Morgan TJ; Turn SQ; George A
    PLoS One; 2015; 10(8):e0136511. PubMed ID: 26308860
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characteristics and heavy metal leaching of ash generated from incineration of automobile shredder residue.
    Lee HY
    J Hazard Mater; 2007 Aug; 147(1-2):570-5. PubMed ID: 17316985
    [TBL] [Abstract][Full Text] [Related]  

  • 55. On-field investigation and process modelling of end-of-life vehicles treatment in the context of Italian craft-type authorized treatment facilities.
    Berzi L; Delogu M; Giorgetti A; Pierini M
    Waste Manag; 2013 Apr; 33(4):892-906. PubMed ID: 23352084
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Pollutant formation in the pyrolysis and combustion of Automotive Shredder Residue.
    Rey L; Conesa JA; Aracil I; Garrido MA; Ortuño N
    Waste Manag; 2016 Oct; 56():376-83. PubMed ID: 27497585
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pyrolysis of palm kernel shell with internal recycling of heavy oil.
    Huang Y; Gao Y; Zhou H; Sun H; Zhou J; Zhang S
    Bioresour Technol; 2019 Jan; 272():77-82. PubMed ID: 30316194
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Scarce metals in conventional passenger vehicles and end-of-life vehicle shredder output.
    Widmer R; Du X; Haag O; Restrepo E; Wäger PA
    Environ Sci Technol; 2015 Apr; 49(7):4591-9. PubMed ID: 25719501
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Thermal and catalytic pyrolysis of a mixture of plastics from small waste electrical and electronic equipment (WEEE).
    Santella C; Cafiero L; De Angelis D; La Marca F; Tuffi R; Vecchio Ciprioti S
    Waste Manag; 2016 Aug; 54():143-52. PubMed ID: 27184448
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Recycling of organic materials and solder from waste printed circuit boards by vacuum pyrolysis-centrifugation coupling technology.
    Zhou Y; Wu W; Qiu K
    Waste Manag; 2011 Dec; 31(12):2569-76. PubMed ID: 21840196
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.