BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 29629080)

  • 1. Continuum tuning of nanoparticle interfacial properties by dynamic covalent exchange.
    Edwards W; Marro N; Turner G; Kay ER
    Chem Sci; 2018 Jan; 9(1):125-133. PubMed ID: 29629080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Programmable dynamic covalent nanoparticle building blocks with complementary reactivity.
    Marro N; Della Sala F; Kay ER
    Chem Sci; 2020 Jan; 11(2):372-383. PubMed ID: 32190260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversible control of nanoparticle functionalization and physicochemical properties by dynamic covalent exchange.
    della Sala F; Kay ER
    Angew Chem Int Ed Engl; 2015 Mar; 54(14):4187-91. PubMed ID: 25973468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversible Control of Nanoparticle Functionalization and Physicochemical Properties by Dynamic Covalent Exchange.
    Della Sala F; Kay ER
    Angew Chem Weinheim Bergstr Ger; 2015 Mar; 127(14):4261-4265. PubMed ID: 27346895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing Multiscale Factors Affecting the Reactivity of Nanoparticle-Bound Molecules.
    Mati IK; Edwards W; Marson D; Howe EJ; Stinson S; Posocco P; Kay ER
    ACS Nano; 2021 May; 15(5):8295-8305. PubMed ID: 33938222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacially formed organized planar inorganic, polymeric and composite nanostructures.
    Khomutov GB
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):79-116. PubMed ID: 15571664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface Functionalization of Metal Nanoparticles by Conjugated Metal-Ligand Interfacial Bonds: Impacts on Intraparticle Charge Transfer.
    Hu P; Chen L; Kang X; Chen S
    Acc Chem Res; 2016; 49(10):2251-2260. PubMed ID: 27690382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapidly Adaptive All-covalent Nanoparticle Surface Engineering.
    Diez-Castellnou M; Suo R; Marro N; Matthew SAL; Kay ER
    Chemistry; 2021 Jul; 27(38):9948-9953. PubMed ID: 33871124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic Covalent Nanoparticle Building Blocks.
    Kay ER
    Chemistry; 2016 Jul; 22(31):10706-16. PubMed ID: 27312526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Interplay of Ligand Properties and Core Size Dictates the Hydrophobicity of Monolayer-Protected Gold Nanoparticles.
    Chew AK; Dallin BC; Van Lehn RC
    ACS Nano; 2021 Mar; 15(3):4534-4545. PubMed ID: 33621066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A General One-Step Synthesis of Alkanethiyl-Stabilized Gold Nanoparticles with Control over Core Size and Monolayer Functionality.
    Borsley S; Edwards W; Mati IK; Poss G; Diez-Castellnou M; Marro N; Kay ER
    Chem Mater; 2023 Aug; 35(15):6168-6177. PubMed ID: 37576587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-dimensional self-assembly of hydrophobic nanoparticles at oil/water interfaces via nanoscale phase separation of mixed ligands.
    Liu SJ; Li YJ; Wang YM; Liu X; Yeung ES
    J Colloid Interface Sci; 2013 Oct; 407():243-9. PubMed ID: 23895950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monolayer-protected nanoparticle film assemblies as platforms for controlling interfacial and adsorption properties in protein monolayer electrochemistry.
    Loftus AF; Reighard KP; Kapourales SA; Leopold MC
    J Am Chem Soc; 2008 Feb; 130(5):1649-61. PubMed ID: 18189391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constitutionally Selective Dynamic Covalent Nanoparticle Assembly.
    Marro N; Suo R; Naden AB; Kay ER
    J Am Chem Soc; 2022 Aug; 144(31):14310-14321. PubMed ID: 35901233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ligand Shell Composition-Dependent Effects on the Apparent Hydrophobicity and Film Behavior of Gold Nanoparticles at the Air-Water Interface.
    Bradford SM; Fisher EA; Meli MV
    Langmuir; 2016 Sep; 32(38):9790-6. PubMed ID: 27594307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macroscopic Au@PANI Core/Shell Nanoparticle Superlattice Monolayer Film with Dual-Responsive Plasmonic Switches.
    Lin H; Song L; Huang Y; Cheng Q; Yang Y; Guo Z; Su F; Chen T
    ACS Appl Mater Interfaces; 2020 Mar; 12(9):11296-11304. PubMed ID: 32043861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multidentate adsorbates for self-assembled monolayer films.
    Chinwangso P; Jamison AC; Lee TR
    Acc Chem Res; 2011 Jul; 44(7):511-9. PubMed ID: 21612198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Principles and Methods for the Rational Design of Core-Shell Nanoparticle Catalysts with Ultralow Noble Metal Loadings.
    Hunt ST; Román-Leshkov Y
    Acc Chem Res; 2018 May; 51(5):1054-1062. PubMed ID: 29510023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Postsynthesis racemization and place exchange reactions. Another step to unravel the origin of chirality for chiral ligand-capped gold nanoparticles.
    Qi H; Hegmann T
    J Am Chem Soc; 2008 Oct; 130(43):14201-6. PubMed ID: 18826312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and Dynamics of Stimuli-Responsive Nanoparticle Monolayers at Fluid Interfaces.
    Qin S; Kang J; Yong X
    Langmuir; 2018 May; 34(19):5581-5591. PubMed ID: 29676917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.