These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 29629140)
1. Simultaneous sensitive detection of multiple DNA glycosylases from lung cancer cells at the single-molecule level. Hu J; Liu MH; Li Y; Tang B; Zhang CY Chem Sci; 2018 Jan; 9(3):712-720. PubMed ID: 29629140 [TBL] [Abstract][Full Text] [Related]
2. Base-Excision-Repair-Induced Construction of a Single Quantum-Dot-Based Sensor for Sensitive Detection of DNA Glycosylase Activity. Wang LJ; Ma F; Tang B; Zhang CY Anal Chem; 2016 Aug; 88(15):7523-9. PubMed ID: 27401302 [TBL] [Abstract][Full Text] [Related]
3. A controlled T7 transcription-driven symmetric amplification cascade machinery for single-molecule detection of multiple repair glycosylases. Wang LJ; Liang L; Liu BJ; Jiang B; Zhang CY Chem Sci; 2021 Mar; 12(15):5544-5554. PubMed ID: 34168791 [TBL] [Abstract][Full Text] [Related]
4. Combination of bidirectional strand displacement amplification with single-molecule detection for multiplexed DNA glycosylases assay. Zhang Y; Hu J; Yang XY; Zhang CY Talanta; 2021 Dec; 235():122805. PubMed ID: 34517663 [TBL] [Abstract][Full Text] [Related]
5. A highly sensitive method for simultaneous detection of hAAG and UDG activity based on multifunctional dsDNA probes mediated exponential rolling circle amplification. Fan L; Liu W; Yang B; Zhang Y; Liu X; Wu X; Ning B; Peng Y; Bai J; Guo L Talanta; 2021 Sep; 232():122429. PubMed ID: 34074415 [TBL] [Abstract][Full Text] [Related]
6. Rolling circle amplification-driven encoding of different fluorescent molecules for simultaneous detection of multiple DNA repair enzymes at the single-molecule level. Li CC; Chen HY; Hu J; Zhang CY Chem Sci; 2020 Jun; 11(22):5724-5734. PubMed ID: 32864084 [TBL] [Abstract][Full Text] [Related]
7. A single quantum dot-based nanosensor with multilayer of multiple acceptors for ultrasensitive detection of human alkyladenine DNA glycosylase. Li CC; Liu WX; Hu J; Zhang CY Chem Sci; 2019 Oct; 10(37):8675-8684. PubMed ID: 31803442 [TBL] [Abstract][Full Text] [Related]
8. Homogeneously Sensitive Detection of Multiple DNA Glycosylases with Intrinsically Fluorescent Nucleotides. Zhang Y; Li CC; Tang B; Zhang CY Anal Chem; 2017 Jul; 89(14):7684-7692. PubMed ID: 28621520 [TBL] [Abstract][Full Text] [Related]
9. Activatable Self-Dissociation of Watson-Crick Structures with Fluorescent Nucleotides for Sensing Multiple Human Glycosylases at Single-Cell Level. Wang LJ; Pan LP; Zou X; Qiu JG; Zhang CY Anal Chem; 2022 Dec; 94(50):17700-17708. PubMed ID: 36475642 [TBL] [Abstract][Full Text] [Related]
10. Simple Mix-and-Read Assay with Multiple Cyclic Enzymatic Repairing Amplification for Rapid and Sensitive Detection of DNA Glycosylase. Hu J; Liu W; Wang J; Qiu JG; Zhang CY Anal Chem; 2021 May; 93(18):6913-6918. PubMed ID: 33929831 [TBL] [Abstract][Full Text] [Related]
11. Base excision-initiated terminal deoxynucleotide transferase-assisted amplification for simultaneous detection of multiple DNA glycosylases. Sun Y; Zang L; Lu J Anal Bioanal Chem; 2022 May; 414(11):3319-3327. PubMed ID: 35277739 [TBL] [Abstract][Full Text] [Related]
12. Controllable Autocatalytic Cleavage-Mediated Fluorescence Recovery for Homogeneous Sensing of Alkyladenine DNA Glycosylase from Human Cancer Cells. Wang LJ; Luo ML; Yang XY; Li XF; Wu Y; Zhang CY Theranostics; 2019; 9(15):4450-4460. PubMed ID: 31285772 [TBL] [Abstract][Full Text] [Related]
13. The role of the N-terminal domain of human apurinic/apyrimidinic endonuclease 1, APE1, in DNA glycosylase stimulation. Kladova OA; Bazlekowa-Karaban M; Baconnais S; Piétrement O; Ishchenko AA; Matkarimov BT; Iakovlev DA; Vasenko A; Fedorova OS; Le Cam E; Tudek B; Kuznetsov NA; Saparbaev M DNA Repair (Amst); 2018 Apr; 64():10-25. PubMed ID: 29475157 [TBL] [Abstract][Full Text] [Related]
14. AP-Endonuclease 1 Accelerates Turnover of Human 8-Oxoguanine DNA Glycosylase by Preventing Retrograde Binding to the Abasic-Site Product. Esadze A; Rodriguez G; Cravens SL; Stivers JT Biochemistry; 2017 Apr; 56(14):1974-1986. PubMed ID: 28345889 [TBL] [Abstract][Full Text] [Related]
15. Label-free fluorescence detection of human 8-oxoguanine DNA glycosylase activity amplified by target-induced rolling circle amplification. Sun M; Chen X; Chen X; Zhou Q; Huang T; Li T; Xie B; Li C; Chen JX; Dai Z; Chen J Anal Chim Acta; 2024 Jan; 1287():342084. PubMed ID: 38182379 [TBL] [Abstract][Full Text] [Related]
16. Mechanism of stimulation of the DNA glycosylase activity of hOGG1 by the major human AP endonuclease: bypass of the AP lyase activity step. Vidal AE; Hickson ID; Boiteux S; Radicella JP Nucleic Acids Res; 2001 Mar; 29(6):1285-92. PubMed ID: 11238994 [TBL] [Abstract][Full Text] [Related]
17. Product inhibition and magnesium modulate the dual reaction mode of hOgg1. Morland I; Luna L; Gustad E; Seeberg E; Bjørås M DNA Repair (Amst); 2005 Mar; 4(3):381-7. PubMed ID: 15661661 [TBL] [Abstract][Full Text] [Related]
18. Generation of 3'-OH terminal-triggered encoding of multicolor fluorescence for simultaneous detection of different DNA glycosylases. Zhang H; Gao Z; He F; Lan J; Chai H; Zhang S; Zuo X; Chen H; Chen X Anal Bioanal Chem; 2022 Sep; 414(23):6989-7000. PubMed ID: 35982252 [TBL] [Abstract][Full Text] [Related]
19. Catalytic and DNA-binding properties of the human Ogg1 DNA N-glycosylase/AP lyase: biochemical exploration of H270, Q315 and F319, three amino acids of the 8-oxoguanine-binding pocket. van der Kemp PA; Charbonnier JB; Audebert M; Boiteux S Nucleic Acids Res; 2004; 32(2):570-8. PubMed ID: 14752045 [TBL] [Abstract][Full Text] [Related]
20. Development of an in Vitro Autocatalytic Self-Replication System for Biosensing Application. Wang LJ; Wang HX; Jiang L; Zhang CY ACS Sens; 2018 Dec; 3(12):2675-2683. PubMed ID: 30460848 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]