These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 29629142)

  • 1. A model for optical gain in colloidal nanoplatelets.
    Li Q; Lian T
    Chem Sci; 2018 Jan; 9(3):728-734. PubMed ID: 29629142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exciton Spatial Coherence and Optical Gain in Colloidal Two-Dimensional Cadmium Chalcogenide Nanoplatelets.
    Li Q; Lian T
    Acc Chem Res; 2019 Sep; 52(9):2684-2693. PubMed ID: 31433164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Red, Yellow, Green, and Blue Amplified Spontaneous Emission and Lasing Using Colloidal CdSe Nanoplatelets.
    She C; Fedin I; Dolzhnikov DS; Dahlberg PD; Engel GS; Schaller RD; Talapin DV
    ACS Nano; 2015 Oct; 9(10):9475-85. PubMed ID: 26302368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amplified spontaneous emission and lasing in colloidal nanoplatelets.
    Guzelturk B; Kelestemur Y; Olutas M; Delikanli S; Demir HV
    ACS Nano; 2014 Jul; 8(7):6599-605. PubMed ID: 24882737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zero-Threshold Optical Gain in Electrochemically Doped Nanoplatelets and the Physics Behind It.
    Geuchies JJ; Dijkhuizen R; Koel M; Grimaldi G; du Fossé I; Evers WH; Hens Z; Houtepen AJ
    ACS Nano; 2022 Nov; 16(11):18777-18788. PubMed ID: 36256901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lateral Size-Dependent Spontaneous and Stimulated Emission Properties in Colloidal CdSe Nanoplatelets.
    Olutas M; Guzelturk B; Kelestemur Y; Yeltik A; Delikanli S; Demir HV
    ACS Nano; 2015 May; 9(5):5041-50. PubMed ID: 25950419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Area- and Thickness-Dependent Biexciton Auger Recombination in Colloidal CdSe Nanoplatelets: Breaking the "Universal Volume Scaling Law".
    Li Q; Lian T
    Nano Lett; 2017 May; 17(5):3152-3158. PubMed ID: 28418671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thickness-Tunable Self-Assembled Colloidal Nanoplatelet Films Enable Ultrathin Optical Gain Media.
    Erdem O; Foroutan S; Gheshlaghi N; Guzelturk B; Altintas Y; Demir HV
    Nano Lett; 2020 Sep; 20(9):6459-6465. PubMed ID: 32787166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Colloidal CdSe/CdS Core/Crown Nanoplatelets for Efficient Blue Light Emission and Optical Amplification.
    Rodà C; Di Giacomo A; Tasende Rodríguez LC; M CS; Leemans J; Hens Z; Geiregat P; Moreels I
    Nano Lett; 2023 Apr; 23(8):3224-3230. PubMed ID: 37125440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low Threshold Multiexciton Optical Gain in Colloidal CdSe/CdTe Core/Crown Type-II Nanoplatelet Heterostructures.
    Li Q; Xu Z; McBride JR; Lian T
    ACS Nano; 2017 Mar; 11(3):2545-2553. PubMed ID: 28157330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colloidal CdSe Quantum Wells with Graded Shell Composition for Low-Threshold Amplified Spontaneous Emission and Highly Efficient Electroluminescence.
    Kelestemur Y; Shynkarenko Y; Anni M; Yakunin S; De Giorgi ML; Kovalenko MV
    ACS Nano; 2019 Dec; 13(12):13899-13909. PubMed ID: 31769648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amplified Spontaneous Emission from Electron-Hole Quantum Droplets in Colloidal CdSe Nanoplatelets.
    Watkins NE; Diroll BT; Williams KR; Liu Y; Greene CL; Wasielewski MR; Schaller RD
    ACS Nano; 2024 Apr; 18(13):9605-9612. PubMed ID: 38497777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface Modification of CdE (E: S, Se, and Te) Nanoplatelets to Reach Thicker Nanoplatelets and Homostructures with Confinement-Induced Intraparticle Type I Energy Level Alignment.
    Moghaddam N; Dabard C; Dufour M; Po H; Xu X; Pons T; Lhuillier E; Ithurria S
    J Am Chem Soc; 2021 Feb; 143(4):1863-1872. PubMed ID: 33471504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How Exciton and Single Carriers Block the Excitonic Transition in Two-Dimensional Cadmium Chalcogenide Nanoplatelets.
    Li Q; He S; Lian T
    Nano Lett; 2020 Aug; 20(8):6162-6169. PubMed ID: 32697589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chloride-Induced Thickness Control in CdSe Nanoplatelets.
    Christodoulou S; Climente JI; Planelles J; Brescia R; Prato M; Martín-García B; Khan AH; Moreels I
    Nano Lett; 2018 Oct; 18(10):6248-6254. PubMed ID: 30178676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reducing the Optical Gain Threshold in Two-Dimensional CdSe Nanoplatelets by the Giant Oscillator Strength Transition Effect.
    Li Q; Liu Q; Schaller RD; Lian T
    J Phys Chem Lett; 2019 Apr; 10(7):1624-1632. PubMed ID: 30892896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How Exciton-Phonon Coupling Impacts Photoluminescence in Halide Perovskite Nanoplatelets.
    Gramlich M; Lampe C; Drewniok J; Urban AS
    J Phys Chem Lett; 2021 Nov; 12(46):11371-11377. PubMed ID: 34791883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large Band Edge Tunability in Colloidal Nanoplatelets.
    Zhou Q; Cho Y; Yang S; Weiss EA; Berkelbach TC; Darancet P
    Nano Lett; 2019 Oct; 19(10):7124-7129. PubMed ID: 31545615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size-Dependent Biexciton Quantum Yields and Carrier Dynamics of Quasi-Two-Dimensional Core/Shell Nanoplatelets.
    Ma X; Diroll BT; Cho W; Fedin I; Schaller RD; Talapin DV; Gray SK; Wiederrecht GP; Gosztola DJ
    ACS Nano; 2017 Sep; 11(9):9119-9127. PubMed ID: 28787569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dark and Bright Excitons in Halide Perovskite Nanoplatelets.
    Gramlich M; Swift MW; Lampe C; Lyons JL; Döblinger M; Efros AL; Sercel PC; Urban AS
    Adv Sci (Weinh); 2022 Feb; 9(5):e2103013. PubMed ID: 34939751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.