These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 29629711)
1. Man-made flows from a fish's perspective: autonomous classification of turbulent fishway flows with field data collected using an artificial lateral line. Tuhtan JA; Fuentes-Perez JF; Toming G; Schneider M; Schwarzenberger R; Schletterer M; Kruusmaa M Bioinspir Biomim; 2018 May; 13(4):046006. PubMed ID: 29629711 [TBL] [Abstract][Full Text] [Related]
2. Distributed flow estimation and closed-loop control of an underwater vehicle with a multi-modal artificial lateral line. DeVries L; Lagor FD; Lei H; Tan X; Paley DA Bioinspir Biomim; 2015 Mar; 10(2):025002. PubMed ID: 25807584 [TBL] [Abstract][Full Text] [Related]
3. Identifying operation scenarios to optimize attraction flow near fishway entrances for endemic fishes on the Tibetan Plateau of China to match their swimming characteristics: A case study. Chen M; An R; Li J; Li K; Li F Sci Total Environ; 2019 Nov; 693():133615. PubMed ID: 31376753 [TBL] [Abstract][Full Text] [Related]
4. A model of the lateral line of fish for vortex sensing. Ren Z; Mohseni K Bioinspir Biomim; 2012 Sep; 7(3):036016. PubMed ID: 22585366 [TBL] [Abstract][Full Text] [Related]
5. Mexican blind cavefish use mouth suction to detect obstacles. Holzman R; Perkol-Finkel S; Zilman G J Exp Biol; 2014 Jun; 217(Pt 11):1955-62. PubMed ID: 24675558 [TBL] [Abstract][Full Text] [Related]
6. A design of a nature-like fishway to solve the fractured river connectivity caused by small hydropower based on hydrodynamics and fish behaviors. Rao J; Wei Q; Tang L; Wang Y; Liang R; Li K Environ Sci Pollut Res Int; 2024 Apr; 31(19):27883-27896. PubMed ID: 38523215 [TBL] [Abstract][Full Text] [Related]
7. Design and application of a fish-shaped lateral line probe for flow measurement. Tuhtan JA; Fuentes-Pérez JF; Strokina N; Toming G; Musall M; Noack M; Kämäräinen JK; Kruusmaa M Rev Sci Instrum; 2016 Apr; 87(4):045110. PubMed ID: 27131710 [TBL] [Abstract][Full Text] [Related]
8. A fish perspective: detecting flow features while moving using an artificial lateral line in steady and unsteady flow. Chambers LD; Akanyeti O; Venturelli R; Ježov J; Brown J; Kruusmaa M; Fiorini P; Megill WM J R Soc Interface; 2014 Oct; 11(99):. PubMed ID: 25079867 [TBL] [Abstract][Full Text] [Related]
9. A bio-inspired real-time capable artificial lateral line system for freestream flow measurements. Abels C; Qualtieri A; De Vittorio M; Megill WM; Rizzi F Bioinspir Biomim; 2016 Jun; 11(3):035006. PubMed ID: 27257144 [TBL] [Abstract][Full Text] [Related]
10. Detection of artificial water flows by the lateral line system of a benthic feeding cichlid fish. Schwalbe MA; Sevey BJ; Webb JF J Exp Biol; 2016 Apr; 219(Pt 7):1050-9. PubMed ID: 27030780 [TBL] [Abstract][Full Text] [Related]
11. A review of fish swimming mechanics and behaviour in altered flows. Liao JC Philos Trans R Soc Lond B Biol Sci; 2007 Nov; 362(1487):1973-93. PubMed ID: 17472925 [TBL] [Abstract][Full Text] [Related]
12. Artificial lateral line with biomimetic neuromasts to emulate fish sensing. Yang Y; Nguyen N; Chen N; Lockwood M; Tucker C; Hu H; Bleckmann H; Liu C; Jones DL Bioinspir Biomim; 2010 Mar; 5(1):16001. PubMed ID: 20061601 [TBL] [Abstract][Full Text] [Related]
13. Artificial lateral line based local sensing between two adjacent robotic fish. Zheng X; Wang C; Fan R; Xie G Bioinspir Biomim; 2017 Nov; 13(1):016002. PubMed ID: 28949301 [TBL] [Abstract][Full Text] [Related]
14. Hydrodynamic pressure sensing with an artificial lateral line in steady and unsteady flows. Venturelli R; Akanyeti O; Visentin F; Ježov J; Chambers LD; Toming G; Brown J; Kruusmaa M; Megill WM; Fiorini P Bioinspir Biomim; 2012 Sep; 7(3):036004. PubMed ID: 22498729 [TBL] [Abstract][Full Text] [Related]
15. Behaviour and locomotor activity of a migratory catostomid during fishway passage. Silva AT; Hatry C; Thiem JD; Gutowsky LF; Hatin D; Zhu DZ; Dawson JW; Katopodis C; Cooke SJ PLoS One; 2015; 10(4):e0123051. PubMed ID: 25853245 [TBL] [Abstract][Full Text] [Related]
16. Using computational fluid dynamics to calculate the stimulus to the lateral line of a fish in still water. Rapo MA; Jiang H; Grosenbaugh MA; Coombs S J Exp Biol; 2009 May; 212(Pt 10):1494-505. PubMed ID: 19411543 [TBL] [Abstract][Full Text] [Related]
17. Swimming activity and energetic costs of adult lake sturgeon during fishway passage. Thiem JD; Dawson JW; Hatin D; Danylchuk AJ; Dumont P; Gleiss AC; Wilson RP; Cooke SJ J Exp Biol; 2016 Aug; 219(Pt 16):2534-44. PubMed ID: 27535988 [TBL] [Abstract][Full Text] [Related]
18. Nonlinear estimation-based dipole source localization for artificial lateral line systems. Abdulsadda AT; Tan X Bioinspir Biomim; 2013 Jun; 8(2):026005. PubMed ID: 23538856 [TBL] [Abstract][Full Text] [Related]
19. The flow fields involved in hydrodynamic imaging by blind Mexican cave fish (Astyanax fasciatus). Part I: open water and heading towards a wall. Windsor SP; Norris SE; Cameron SM; Mallinson GD; Montgomery JC J Exp Biol; 2010 Nov; 213(Pt 22):3819-31. PubMed ID: 21037061 [TBL] [Abstract][Full Text] [Related]
20. Lateral line nerve fibers do not code bulk water flow direction in turbulent flow. Chagnaud BP; Bleckmann H; Hofmann MH Zoology (Jena); 2008; 111(3):204-17. PubMed ID: 18329260 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]