These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 29629762)
41. Protein-associated water and secondary structure effect removal of blood proteins from metallic substrates. Anand G; Zhang F; Linhardt RJ; Belfort G Langmuir; 2011 Mar; 27(5):1830-6. PubMed ID: 21182242 [TBL] [Abstract][Full Text] [Related]
42. Enhanced stabilization of aerosol-OT surfactant monolayer upon interaction with small amounts of bovine serum albumin at the air-water interface. Caetano W; Ferreira M; Oliveira ON; Itri R Colloids Surf B Biointerfaces; 2004 Oct; 38(1-2):21-7. PubMed ID: 15465300 [TBL] [Abstract][Full Text] [Related]
43. Bovine serum albumin unfolding at the air/water interface as studied by dilational surface rheology. Noskov BA; Mikhailovskaya AA; Lin SY; Loglio G; Miller R Langmuir; 2010 Nov; 26(22):17225-31. PubMed ID: 20961051 [TBL] [Abstract][Full Text] [Related]
44. Damage of proteins at the air/water interface: Surface tension characterizes globulin interface stability. Xiao H; Huang L; Zhang W; Yin Z Int J Pharm; 2020 Jun; 584():119445. PubMed ID: 32450209 [TBL] [Abstract][Full Text] [Related]
45. Induction of changes in the secondary structure of globular proteins by a hydrophobic surface. Wu H; Fan Y; Sheng J; Sui SF Eur Biophys J; 1993; 22(3):201-5. PubMed ID: 8404725 [TBL] [Abstract][Full Text] [Related]
46. Differential effects of lysophosphatidylcholine on the adsorption of phospholipids to an air/water interface. Biswas SC; Rananavare SB; Hall SB Biophys J; 2007 Jan; 92(2):493-501. PubMed ID: 17056729 [TBL] [Abstract][Full Text] [Related]
47. The effect of surface coverage on conformation changes of bovine serum albumin molecules at the air-solution interface detected by sum frequency generation vibrational spectroscopy. Wang J; Buck SM; Chen Z Analyst; 2003 Jun; 128(6):773-8. PubMed ID: 12866902 [TBL] [Abstract][Full Text] [Related]
48. Adsorption of bovine serum albumin on nano and bulk oxide particles in deionized water. Song L; Yang K; Jiang W; Du P; Xing B Colloids Surf B Biointerfaces; 2012 Jun; 94():341-6. PubMed ID: 22405471 [TBL] [Abstract][Full Text] [Related]
49. Effects of gramicidin-A on the adsorption of phospholipids to the air-water interface. Biswas SC; Rananavare SB; Hall SB Biochim Biophys Acta; 2005 Nov; 1717(1):41-9. PubMed ID: 16242116 [TBL] [Abstract][Full Text] [Related]
50. Change of the isoelectric point of hemoglobin at the air/water interface probed by the orientational flip-flop of water molecules. Devineau S; Inoue KI; Kusaka R; Urashima SH; Nihonyanagi S; Baigl D; Tsuneshige A; Tahara T Phys Chem Chem Phys; 2017 Apr; 19(16):10292-10300. PubMed ID: 28383588 [TBL] [Abstract][Full Text] [Related]
51. Interaction of Myoglobin colloids with BSA in solution: Insights into complex formation and elastic compliance. Madhumitha D; Dhathathreyan A Int J Biol Macromol; 2017 Dec; 105(Pt 1):1259-1268. PubMed ID: 28768187 [TBL] [Abstract][Full Text] [Related]
52. Interfacial properties of mixed beta-lactoglobulin-SDS layers at the water/air and water/oil interface. Pradines V; Krägel J; Fainerman VB; Miller R J Phys Chem B; 2009 Jan; 113(3):745-51. PubMed ID: 19113874 [TBL] [Abstract][Full Text] [Related]
53. A neutron reflection study of adsorbed deuterated myoglobin layers on hydrophobic surfaces. Brouette N; Fragneto G; Cousin F; Moulin M; Haertlein M; Sferrazza M J Colloid Interface Sci; 2013 Jan; 390(1):114-20. PubMed ID: 23079044 [TBL] [Abstract][Full Text] [Related]
54. Adsorption of frog foam nest proteins at the air-water interface. Cooper A; Kennedy MW; Fleming RI; Wilson EH; Videler H; Wokosin DL; Su TJ; Green RJ; Lu JR Biophys J; 2005 Mar; 88(3):2114-25. PubMed ID: 15626715 [TBL] [Abstract][Full Text] [Related]
55. Milk whey proteins and xanthan gum interactions in solution and at the air-water interface: a rheokinetic study. Perez AA; Sánchez CC; Patino JM; Rubiolo AC; Santiago LG Colloids Surf B Biointerfaces; 2010 Nov; 81(1):50-7. PubMed ID: 20692133 [TBL] [Abstract][Full Text] [Related]
56. Kinetics of adsorption of proteins at interfaces: role of protein conformation in diffusional adsorption. Damodaran S; Song KB Biochim Biophys Acta; 1988 Jun; 954(3):253-64. PubMed ID: 3370217 [TBL] [Abstract][Full Text] [Related]
57. Effect of the air-water interface on the structure of lysozyme in the presence of guanidinium chloride. Perriman AW; Henderson MJ; Evenhuis CR; McGillivray DJ; White JW J Phys Chem B; 2008 Aug; 112(31):9532-9. PubMed ID: 18616315 [TBL] [Abstract][Full Text] [Related]
58. Quantitative description of the parameters affecting the adsorption behaviour of globular proteins. Delahaije RJ; Gruppen H; Giuseppin ML; Wierenga PA Colloids Surf B Biointerfaces; 2014 Nov; 123():199-206. PubMed ID: 25280607 [TBL] [Abstract][Full Text] [Related]
59. Influence of alkane and perfluorocarbon vapors on adsorbed surface layers and spread insoluble monolayers of surfactants, proteins and lipids. Fainerman VB; Aksenenko EV; Miller R Adv Colloid Interface Sci; 2017 Jun; 244():100-112. PubMed ID: 26656422 [TBL] [Abstract][Full Text] [Related]
60. Compression/expansion rheology of oil/water interfaces with adsorbed proteins. Comparison with the air/water surface. Benjamins J; Lyklema J; Lucassen-Reynders EH Langmuir; 2006 Jul; 22(14):6181-8. PubMed ID: 16800674 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]