These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 29630039)

  • 1. G2-seq: A High Throughput Sequencing-based Technique for Identifying Late Replicating Regions of the Genome.
    Foss EJ; Lao U; Bedalov A
    J Vis Exp; 2018 Mar; (133):. PubMed ID: 29630039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA copy-number measurement of genome replication dynamics by high-throughput sequencing: the sort-seq, sync-seq and MFA-seq family.
    Batrakou DG; Müller CA; Wilson RHC; Nieduszynski CA
    Nat Protoc; 2020 Mar; 15(3):1255-1284. PubMed ID: 32051615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous Profiling of DNA Accessibility and Gene Expression Dynamics with ATAC-Seq and RNA-Seq.
    Hendrickson DG; Soifer I; Wranik BJ; Botstein D; Scott McIsaac R
    Methods Mol Biol; 2018; 1819():317-333. PubMed ID: 30421411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping ribonucleotides in genomic DNA and exploring replication dynamics by polymerase usage sequencing (Pu-seq).
    Keszthelyi A; Daigaku Y; Ptasińska K; Miyabe I; Carr AM
    Nat Protoc; 2015 Nov; 10(11):1786-801. PubMed ID: 26492137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Capturing the dynamics of genome replication on individual ultra-long nanopore sequence reads.
    Müller CA; Boemo MA; Spingardi P; Kessler BM; Kriaucionis S; Simpson JT; Nieduszynski CA
    Nat Methods; 2019 May; 16(5):429-436. PubMed ID: 31011185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide analysis of replication timing by next-generation sequencing with E/L Repli-seq.
    Marchal C; Sasaki T; Vera D; Wilson K; Sima J; Rivera-Mulia JC; Trevilla-García C; Nogues C; Nafie E; Gilbert DM
    Nat Protoc; 2018 May; 13(5):819-839. PubMed ID: 29599440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The dynamics of genome replication using deep sequencing.
    Müller CA; Hawkins M; Retkute R; Malla S; Wilson R; Blythe MJ; Nakato R; Komata M; Shirahige K; de Moura AP; Nieduszynski CA
    Nucleic Acids Res; 2014 Jan; 42(1):e3. PubMed ID: 24089142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Versatile Procedure to Generate Genome-Wide Spatiotemporal Program of Replication in Yeast Species.
    Agier N; Fischer G
    Methods Mol Biol; 2016; 1361():247-64. PubMed ID: 26483026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromatin Immunoprecipitation and High-Throughput Sequencing (ChIP-Seq): Tips and Tricks Regarding the Laboratory Protocol and Initial Downstream Data Analysis.
    Patten DK; Corleone G; Magnani L
    Methods Mol Biol; 2018; 1767():271-288. PubMed ID: 29524141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Throughput Yeast Strain Sequencing.
    Schwartz K; Sherlock G
    Cold Spring Harb Protoc; 2016 Oct; 2016(10):. PubMed ID: 27698244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. htSeqTools: high-throughput sequencing quality control, processing and visualization in R.
    Planet E; Attolini CS; Reina O; Flores O; Rossell D
    Bioinformatics; 2012 Feb; 28(4):589-90. PubMed ID: 22199381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative BrdU immunoprecipitation method demonstrates that Fkh1 and Fkh2 are rate-limiting activators of replication origins that reprogram replication timing in G1 phase.
    Peace JM; Villwock SK; Zeytounian JL; Gan Y; Aparicio OM
    Genome Res; 2016 Mar; 26(3):365-75. PubMed ID: 26728715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ChIP-Seq using high-throughput DNA sequencing for genome-wide identification of transcription factor binding sites.
    Lefrançois P; Zheng W; Snyder M
    Methods Enzymol; 2010; 470():77-104. PubMed ID: 20946807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Enigma of Progressively Partial Endoreplication: New Insights Provided by Flow Cytometry and Next-Generation Sequencing.
    Hřibová E; Holušová K; Trávníček P; Petrovská B; Ponert J; Šimková H; Kubátová B; Jersáková J; Čurn V; Suda J; Doležel J; Vrána J
    Genome Biol Evol; 2016 Jul; 8(6):1996-2005. PubMed ID: 27324917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-throughput analysis of single human cells reveals the complex nature of DNA replication timing control.
    Massey DJ; Koren A
    Nat Commun; 2022 May; 13(1):2402. PubMed ID: 35504890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical genomic profiling via barcode sequencing to predict compound mode of action.
    Piotrowski JS; Simpkins SW; Li SC; Deshpande R; McIlwain SJ; Ong IM; Myers CL; Boone C; Andersen RJ
    Methods Mol Biol; 2015; 1263():299-318. PubMed ID: 25618354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in high throughput DNA sequence data compression.
    Sardaraz M; Tahir M; Ikram AA
    J Bioinform Comput Biol; 2016 Jun; 14(3):1630002. PubMed ID: 26846812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PAT-seq: a method to study the integration of 3'-UTR dynamics with gene expression in the eukaryotic transcriptome.
    Harrison PF; Powell DR; Clancy JL; Preiss T; Boag PR; Traven A; Seemann T; Beilharz TH
    RNA; 2015 Aug; 21(8):1502-10. PubMed ID: 26092945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanopore sequencing enables near-complete de novo assembly of Saccharomyces cerevisiae reference strain CEN.PK113-7D.
    Salazar AN; Gorter de Vries AR; van den Broek M; Wijsman M; de la Torre Cortés P; Brickwedde A; Brouwers N; Daran JG; Abeel T
    FEMS Yeast Res; 2017 Nov; 17(7):. PubMed ID: 28961779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MRC1-dependent scaling of the budding yeast DNA replication timing program.
    Koren A; Soifer I; Barkai N
    Genome Res; 2010 Jun; 20(6):781-90. PubMed ID: 20219942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.