These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
408 related articles for article (PubMed ID: 29630757)
1. 3D phase contrast MRI in models of human airways: Validation of computational fluid dynamics simulations of steady inspiratory flow. Collier GJ; Kim M; Chung Y; Wild JM J Magn Reson Imaging; 2018 Nov; 48(5):1400-1409. PubMed ID: 29630757 [TBL] [Abstract][Full Text] [Related]
2. Effect of upper airway on tracheobronchial fluid dynamics. Kim M; Collier GJ; Wild JM; Chung YM Int J Numer Method Biomed Eng; 2018 Sep; 34(9):e3112. PubMed ID: 29856119 [TBL] [Abstract][Full Text] [Related]
3. In vitro validation of computational fluid dynamic simulation in human proximal airways with hyperpolarized 3He magnetic resonance phase-contrast velocimetry. de Rochefort L; Vial L; Fodil R; Maître X; Louis B; Isabey D; Caillibotte G; Thiriet M; Bittoun J; Durand E; Sbirlea-Apiou G J Appl Physiol (1985); 2007 May; 102(5):2012-23. PubMed ID: 17289906 [TBL] [Abstract][Full Text] [Related]
4. Numerical investigation of transient transport and deposition of microparticles under unsteady inspiratory flow in human upper airways. Naseri A; Shaghaghian S; Abouali O; Ahmadi G Respir Physiol Neurobiol; 2017 Oct; 244():56-72. PubMed ID: 28673875 [TBL] [Abstract][Full Text] [Related]
5. Assessing the relationship between movement and airflow in the upper airway using computational fluid dynamics with motion determined from magnetic resonance imaging. Bates AJ; Schuh A; Amine-Eddine G; McConnell K; Loew W; Fleck RJ; Woods JC; Dumoulin CL; Amin RS Clin Biomech (Bristol); 2019 Jun; 66():88-96. PubMed ID: 29079097 [TBL] [Abstract][Full Text] [Related]
6. Human upper-airway respiratory airflow: In vivo comparison of computational fluid dynamics simulations and hyperpolarized 129Xe phase contrast MRI velocimetry. Xiao Q; Stewart NJ; Willmering MM; Gunatilaka CC; Thomen RP; Schuh A; Krishnamoorthy G; Wang H; Amin RS; Dumoulin CL; Woods JC; Bates AJ PLoS One; 2021; 16(8):e0256460. PubMed ID: 34411195 [TBL] [Abstract][Full Text] [Related]
7. Computational fluid dynamics simulations of blood flow regularized by 3D phase contrast MRI. Rispoli VC; Nielsen JF; Nayak KS; Carvalho JL Biomed Eng Online; 2015 Nov; 14():110. PubMed ID: 26611470 [TBL] [Abstract][Full Text] [Related]
8. A quasi-realistic computational model development and flow field study of the human upper and central airways. Rezazadeh MR; Dastan A; Sadrizadeh S; Abouali O Med Biol Eng Comput; 2024 Oct; 62(10):3025-3041. PubMed ID: 38758518 [TBL] [Abstract][Full Text] [Related]
9. Inhaled Aerosol Distribution in Human Airways: A Scintigraphy-Guided Study in a 3D Printed Model. Verbanck S; Ghorbaniasl G; Biddiscombe MF; Dragojlovic D; Ricks N; Lacor C; Ilsen B; de Mey J; Schuermans D; Underwood SR; Barnes PJ; Vincken W; Usmani OS J Aerosol Med Pulm Drug Deliv; 2016 Dec; 29(6):525-533. PubMed ID: 27337643 [TBL] [Abstract][Full Text] [Related]
11. Validation of computational fluid dynamics methods with anatomically exact, 3D printed MRI phantoms and 4D pcMRI. Anderson JR; Diaz O; Klucznik R; Zhang YJ; Britz GW; Grossman RG; Lv N; Huang Q; Karmonik C Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6699-701. PubMed ID: 25571533 [TBL] [Abstract][Full Text] [Related]
12. Assessing Airflow Sensitivity to Healthy and Diseased Lung Conditions in a Computational Fluid Dynamics Model Validated In Vitro. Sul B; Oppito Z; Jayasekera S; Vanger B; Zeller A; Morris M; Ruppert K; Altes T; Rakesh V; Day S; Robinson R; Reifman J; Wallqvist A J Biomech Eng; 2018 May; 140(5):. PubMed ID: 29305603 [TBL] [Abstract][Full Text] [Related]
13. Construction of a hybrid lung model by combining a real geometry of the upper airways and an idealized geometry of the lower airways. Agujetas R; Barrio-Perotti R; Ferrera C; Pandal-Blanco A; Walters DK; Fernández-Tena A Comput Methods Programs Biomed; 2020 Nov; 196():105613. PubMed ID: 32593974 [TBL] [Abstract][Full Text] [Related]
14. Investigation of inhalation and exhalation flow pattern in a realistic human upper airway model by PIV experiments and CFD simulations. Xu X; Wu J; Weng W; Fu M Biomech Model Mechanobiol; 2020 Oct; 19(5):1679-1695. PubMed ID: 32026145 [TBL] [Abstract][Full Text] [Related]
15. Dry powder inhaler aerosol deposition in a model of tracheobronchial airways: Validating CFD predictions with in vitro data. Ahookhosh K; Saidi M; Aminfar H; Mohammadpourfard M; Hamishehkar H; Yaqoubi S Int J Pharm; 2020 Sep; 587():119599. PubMed ID: 32663586 [TBL] [Abstract][Full Text] [Related]
17. Numerical investigation of inspiratory airflow in a realistic model of the human tracheobronchial airways and a comparison with experimental results. Elcner J; Lizal F; Jedelsky J; Jicha M; Chovancova M Biomech Model Mechanobiol; 2016 Apr; 15(2):447-69. PubMed ID: 26163996 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of computational fluid dynamics models for predicting pediatric upper airway airflow characteristics. Chen Y; Feng X; Shi X; Cai W; Li B; Zhao Y Med Biol Eng Comput; 2023 Jan; 61(1):259-270. PubMed ID: 36369608 [TBL] [Abstract][Full Text] [Related]
19. Computational simulations of airflow in an in vitro model of the pediatric upper airways. Allen GM; Shortall BP; Gemci T; Corcoran TE; Chigier NA J Biomech Eng; 2004 Oct; 126(5):604-13. PubMed ID: 15648813 [TBL] [Abstract][Full Text] [Related]
20. Cerebral blood flow in a healthy Circle of Willis and two intracranial aneurysms: computational fluid dynamics versus four-dimensional phase-contrast magnetic resonance imaging. Berg P; Stucht D; Janiga G; Beuing O; Speck O; Thévenin D J Biomech Eng; 2014 Apr; 136(4):. PubMed ID: 24292415 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]