These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 29630819)

  • 1. AMOEBA Polarizable Force Field Parameters of the Heme Cofactor in Its Ferrous and Ferric Forms.
    Wu X; Clavaguera C; Lagardère L; Piquemal JP; de la Lande A
    J Chem Theory Comput; 2018 May; 14(5):2705-2720. PubMed ID: 29630819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrafast heme dynamics in ferrous versus ferric cytochrome c studied by time-resolved resonance Raman and transient absorption spectroscopy.
    Negrerie M; Cianetti S; Vos MH; Martin JL; Kruglik SG
    J Phys Chem B; 2006 Jun; 110(25):12766-81. PubMed ID: 16800612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AMOEBA Polarizable Force Field for Molecular Dynamics Simulations of Glyme Solvents.
    Binninger T; Saraç D; Marsh L; Picard T; Doublet ML; Raynaud C
    J Chem Theory Comput; 2023 Feb; 19(3):1023-1034. PubMed ID: 36692444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and electronic properties of the heme cofactors in a multi-heme synthetic cytochrome.
    Kalsbeck WA; Robertson DE; Pandey RK; Smith KM; Dutton PL; Bocian DF
    Biochemistry; 1996 Mar; 35(11):3429-38. PubMed ID: 8639493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bis-methionine ligation to heme iron in mutants of cytochrome b562. 2. Characterization by NMR of heme-ligand interactions.
    Barker PD; Freund SM
    Biochemistry; 1996 Oct; 35(42):13627-35. PubMed ID: 8885842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insight into the preferential N-binding
    Abucayon EG; Chu JM; Ayala M; Khade RL; Zhang Y; Richter-Addo GB
    Dalton Trans; 2021 Mar; 50(10):3487-3498. PubMed ID: 33634802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An ethane-bridged porphyrin dimer as a model of di-heme proteins: inorganic and bioinorganic perspectives and consequences of heme-heme interactions.
    Sil D; Rath SP
    Dalton Trans; 2015 Oct; 44(37):16195-211. PubMed ID: 26158407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural changes and picosecond to second dynamics of cytochrome c in interaction with nitric oxide in ferrous and ferric redox states.
    Kruglik SG; Yoo BK; Lambry JC; Martin JL; Negrerie M
    Phys Chem Chem Phys; 2017 Aug; 19(32):21317-21334. PubMed ID: 28759066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model theoretical study on ligand exchange reactions of CooA.
    Ishida T; Aono S
    Phys Chem Chem Phys; 2013 Apr; 15(16):6139-48. PubMed ID: 23511331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Classical force field parameters for the heme prosthetic group of cytochrome c.
    Autenrieth F; Tajkhorshid E; Baudry J; Luthey-Schulten Z
    J Comput Chem; 2004 Oct; 25(13):1613-22. PubMed ID: 15264255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NO bonding to heme groups: DFT and correlated ab initio calculations.
    Oláh J; Harvey JN
    J Phys Chem A; 2009 Jul; 113(26):7338-45. PubMed ID: 19354257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DFT and the electromerism in complexes of iron with diatomic ligands.
    Silaghi-Dumitrescu R; Silaghi-Dumitrescu I
    J Inorg Biochem; 2006 Jan; 100(1):161-6. PubMed ID: 16343631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrahigh resolution structures of nitrophorin 4: heme distortion in ferrous CO and NO complexes.
    Maes EM; Roberts SA; Weichsel A; Montfort WR
    Biochemistry; 2005 Sep; 44(38):12690-9. PubMed ID: 16171383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of thioethers and sulfoxides as axial ligands for N-acetylmicroperoxidase-8: implications for oxidation of methionine-80 in cytochrome c.
    Lushington GH; Cowley AB; Silchenko S; Lukat-Rodgers GS; Rodgers KR; Benson DR
    Inorg Chem; 2003 Nov; 42(23):7550-9. PubMed ID: 14606851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Why is the oxidation state of iron crucial for the activity of heme-dependent aldoxime dehydratase? A QM/MM study.
    Liao RZ; Thiel W
    J Phys Chem B; 2012 Aug; 116(31):9396-408. PubMed ID: 22799447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectroscopic characterization of five- and six-coordinate ferrous-NO heme complexes. Evidence for heme Fe-proximal cysteinate bond cleavage in the ferrous-NO adducts of the Trp-409Tyr/Phe proximal environment mutants of neuronal nitric oxide synthase.
    Voegtle HL; Sono M; Adak S; Pond AE; Tomita T; Perera R; Goodin DB; Ikeda-Saito M; Stuehr DJ; Dawson JH
    Biochemistry; 2003 Mar; 42(8):2475-84. PubMed ID: 12600215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate Host-Guest Binding Free Energies Using the AMOEBA Polarizable Force Field.
    Chung MKJ; Miller RJ; Novak B; Wang Z; Ponder JW
    J Chem Inf Model; 2023 May; 63(9):2769-2782. PubMed ID: 37075788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A T67A mutation in the proximal pocket of the high-spin heme of MauG stabilizes formation of a mixed-valent FeII/FeIII state and enhances charge resonance stabilization of the bis-FeIV state.
    Shin S; Feng M; Li C; Williamson HR; Choi M; Wilmot CM; Davidson VL
    Biochim Biophys Acta; 2015 Aug; 1847(8):709-16. PubMed ID: 25896561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heme ferrous-hydroperoxo complexes: some theoretical considerations.
    Silaghi-Dumitrescu R
    Arch Biochem Biophys; 2004 Apr; 424(2):137-40. PubMed ID: 15047185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Free energy simulations with the AMOEBA polarizable force field and metadynamics on GPU platform.
    Peng X; Zhang Y; Chu H; Li G
    J Comput Chem; 2016 Mar; 37(6):614-22. PubMed ID: 26493154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.