These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 29630822)

  • 1. Theoretical Investigations of the Role of Mutations in Dynamics of Kinesin Motor Proteins.
    Misiura M; Wang Q; Cheung MS; Kolomeisky AB
    J Phys Chem B; 2018 May; 122(17):4653-4661. PubMed ID: 29630822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural consequences of hereditary spastic paraplegia disease-related mutations in kinesin.
    Dutta M; Diehl MR; Onuchic JN; Jana B
    Proc Natl Acad Sci U S A; 2018 Nov; 115(46):E10822-E10829. PubMed ID: 30366951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the structural and energetic basis of kinesin-microtubule binding using computational alanine-scanning mutagenesis.
    Li M; Zheng W
    Biochemistry; 2011 Oct; 50(40):8645-55. PubMed ID: 21910419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinesin-5 allosteric inhibitors uncouple the dynamics of nucleotide, microtubule, and neck-linker binding sites.
    Scarabelli G; Grant BJ
    Biophys J; 2014 Nov; 107(9):2204-13. PubMed ID: 25418105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of kinesin switch I mutations that cause hereditary spastic paraplegia.
    Jennings S; Chenevert M; Liu L; Mottamal M; Wojcik EJ; Huckaba TM
    PLoS One; 2017; 12(7):e0180353. PubMed ID: 28678816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decrypting the structural, dynamic, and energetic basis of a monomeric kinesin interacting with a tubulin dimer in three ATPase states by all-atom molecular dynamics simulation.
    Chakraborty S; Zheng W
    Biochemistry; 2015 Jan; 54(3):859-69. PubMed ID: 25537000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Allosteric control of kinesin's motor domain by tubulin: a molecular dynamics study.
    Krukau A; Knecht V; Lipowsky R
    Phys Chem Chem Phys; 2014 Apr; 16(13):6189-98. PubMed ID: 24561904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drosophila Ncd reveals an evolutionarily conserved powerstroke mechanism for homodimeric and heterodimeric kinesin-14s.
    Zhang P; Dai W; Hahn J; Gilbert SP
    Proc Natl Acad Sci U S A; 2015 May; 112(20):6359-64. PubMed ID: 25941402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleotide-dependent movements of the kinesin motor domain predicted by simulated annealing.
    Wriggers W; Schulten K
    Biophys J; 1998 Aug; 75(2):646-61. PubMed ID: 9675167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular origin of the weak susceptibility of kinesin velocity to loads and its relation to the collective behavior of kinesins.
    Wang Q; Diehl MR; Jana B; Cheung MS; Kolomeisky AB; Onuchic JN
    Proc Natl Acad Sci U S A; 2017 Oct; 114(41):E8611-E8617. PubMed ID: 28973894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinesin motility is driven by subdomain dynamics.
    Hwang W; Lang MJ; Karplus M
    Elife; 2017 Nov; 6():. PubMed ID: 29111975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping the Processivity Determinants of the Kinesin-3 Motor Domain.
    Scarabelli G; Soppina V; Yao XQ; Atherton J; Moores CA; Verhey KJ; Grant BJ
    Biophys J; 2015 Oct; 109(8):1537-40. PubMed ID: 26488644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neck linker docking is critical for Kinesin-1 force generation in cells but at a cost to motor speed and processivity.
    Budaitis BG; Jariwala S; Reinemann DN; Schimert KI; Scarabelli G; Grant BJ; Sept D; Lang MJ; Verhey KJ
    Elife; 2019 May; 8():. PubMed ID: 31084716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of spastic paraplegia mutations in KIF5A kinesin on transport activity.
    Ebbing B; Mann K; Starosta A; Jaud J; Schöls L; Schüle R; Woehlke G
    Hum Mol Genet; 2008 May; 17(9):1245-52. PubMed ID: 18203753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A structural perspective on the dynamics of kinesin motors.
    Hyeon C; Onuchic JN
    Biophys J; 2011 Dec; 101(11):2749-59. PubMed ID: 22261064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structural switch of nucleotide-free kinesin.
    Cao L; Cantos-Fernandes S; Gigant B
    Sci Rep; 2017 Feb; 7():42558. PubMed ID: 28195215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How kinesin waits between steps.
    Mori T; Vale RD; Tomishige M
    Nature; 2007 Nov; 450(7170):750-4. PubMed ID: 18004302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural Basis of Backwards Motion in Kinesin-1-Kinesin-14 Chimera: Implication for Kinesin-14 Motility.
    Yamagishi M; Shigematsu H; Yokoyama T; Kikkawa M; Sugawa M; Aoki M; Shirouzu M; Yajima J; Nitta R
    Structure; 2016 Aug; 24(8):1322-1334. PubMed ID: 27452403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parsing the roles of neck-linker docking and tethered head diffusion in the stepping dynamics of kinesin.
    Zhang Z; Goldtzvik Y; Thirumalai D
    Proc Natl Acad Sci U S A; 2017 Nov; 114(46):E9838-E9845. PubMed ID: 29087307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Road-blocker HSP disease mutation disrupts pre-organization for ATP hydrolysis in kinesin through a second sphere control.
    Manna RN; Onuchic JN; Jana B
    Proc Natl Acad Sci U S A; 2023 Jan; 120(1):e2215170120. PubMed ID: 36574689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.