These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 29630970)
1. Similar structural stabilities of 3-isopropylmalate dehydrogenases from the obligatory piezophilic bacterium Shewanella benthica strain DB21MT-2 and its atmospheric congener S. oneidensis strain MR-1. Ohmae E; Hamajima Y; Nagae T; Watanabe N; Kato C Biochim Biophys Acta Proteins Proteom; 2018; 1866(5-6):680-691. PubMed ID: 29630970 [TBL] [Abstract][Full Text] [Related]
2. Pressure adaptation of 3-isopropylmalate dehydrogenase from an extremely piezophilic bacterium is attributed to a single amino acid substitution. Hamajima Y; Nagae T; Watanabe N; Ohmae E; Kato-Yamada Y; Kato C Extremophiles; 2016 Mar; 20(2):177-86. PubMed ID: 26847201 [TBL] [Abstract][Full Text] [Related]
3. Structural analysis of 3-isopropylmalate dehydrogenase from the obligate piezophile Shewanella benthica DB21MT-2 and the nonpiezophile Shewanella oneidensis MR-1. Nagae T; Kato C; Watanabe N Acta Crystallogr Sect F Struct Biol Cryst Commun; 2012 Mar; 68(Pt 3):265-8. PubMed ID: 22442218 [TBL] [Abstract][Full Text] [Related]
4. Pressure effects on the chimeric 3-isopropylmalate dehydrogenases of the deep-sea piezophilic Shewanella benthica and the atmospheric pressure-adapted Shewanella oneidensis. Hamajima Y; Nagae T; Watanabe N; Kato-Yamada Y; Imai T; Kato C Biosci Biotechnol Biochem; 2014; 78(3):469-71. PubMed ID: 25036836 [TBL] [Abstract][Full Text] [Related]
5. Piezo-adapted 3-isopropylmalate dehydrogenase of the obligate piezophile Shewanella benthica DB21MT-2 isolated from the 11,000-m depth of the Mariana Trench. Kasahara R; Sato T; Tamegai H; Kato C Biosci Biotechnol Biochem; 2009 Nov; 73(11):2541-3. PubMed ID: 19897891 [TBL] [Abstract][Full Text] [Related]
6. Rates of unfolding, rather than refolding, determine thermal stabilities of thermophilic, mesophilic, and psychrotrophic 3-isopropylmalate dehydrogenases. Gráczer E; Varga A; Hajdú I; Melnik B; Szilágyi A; Semisotnov G; Závodszky P; Vas M Biochemistry; 2007 Oct; 46(41):11536-49. PubMed ID: 17887729 [TBL] [Abstract][Full Text] [Related]
7. High-pressure-induced water penetration into 3-isopropylmalate dehydrogenase. Nagae T; Kawamura T; Chavas LM; Niwa K; Hasegawa M; Kato C; Watanabe N Acta Crystallogr D Biol Crystallogr; 2012 Mar; 68(Pt 3):300-9. PubMed ID: 22349232 [TBL] [Abstract][Full Text] [Related]
8. Urea-induced unfolding and conformational stability of 3-isopropylmalate dehydrogenase from the Thermophile thermus thermophilus and its mesophilic counterpart from Escherichia coli. Motono C; Yamagishi A; Oshima T Biochemistry; 1999 Jan; 38(4):1332-7. PubMed ID: 9930995 [TBL] [Abstract][Full Text] [Related]
9. Drugs against Mycobacterium tuberculosis 3-isopropylmalate dehydrogenase can be developed using homologous enzymes as surrogate targets. Graczer E; Bacso A; Konya D; Kazi A; Soos T; Molnar L; Szimler T; Beinrohr L; Szilagyi A; Zavodszky P; Vas M Protein Pept Lett; 2014; 21(12):1295-307. PubMed ID: 24909230 [TBL] [Abstract][Full Text] [Related]
10. Correlation between the optimal growth pressures of four Shewanella species and the stabilities of their cytochromes c 5. Masanari M; Wakai S; Ishida M; Kato C; Sambongi Y Extremophiles; 2014 May; 18(3):617-27. PubMed ID: 24699850 [TBL] [Abstract][Full Text] [Related]
11. Pressure dependence of activity and stability of dihydrofolate reductases of the deep-sea bacterium Moritella profunda and Escherichia coli. Ohmae E; Murakami C; Tate S; Gekko K; Hata K; Akasaka K; Kato C Biochim Biophys Acta; 2012 Mar; 1824(3):511-9. PubMed ID: 22266402 [TBL] [Abstract][Full Text] [Related]
12. Comparative study on dihydrofolate reductases from Shewanella species living in deep-sea and ambient atmospheric-pressure environments. Murakami C; Ohmae E; Tate S; Gekko K; Nakasone K; Kato C Extremophiles; 2011 Mar; 15(2):165-75. PubMed ID: 21181485 [TBL] [Abstract][Full Text] [Related]
13. Thermodynamic analysis of unfolding and dissociation in lactose repressor protein. Barry JK; Matthews KS Biochemistry; 1999 May; 38(20):6520-8. PubMed ID: 10350470 [TBL] [Abstract][Full Text] [Related]
14. The unfolding of trp aporepressor as a function of pH: evidence for an unfolding intermediate. Eftink MR; Helton KJ; Beavers A; Ramsay GD Biochemistry; 1994 Aug; 33(34):10220-8. PubMed ID: 8068663 [TBL] [Abstract][Full Text] [Related]
15. Stability of cytochromes c' from psychrophilic and piezophilic Shewanella species: implications for complex multiple adaptation to low temperature and high hydrostatic pressure. Suka A; Oki H; Kato Y; Kawahara K; Ohkubo T; Maruno T; Kobayashi Y; Fujii S; Wakai S; Lisdiana L; Sambongi Y Extremophiles; 2019 Mar; 23(2):239-248. PubMed ID: 30689055 [TBL] [Abstract][Full Text] [Related]
16. A stable intermediate in the thermal unfolding process of a chimeric 3-isopropylmalate dehydrogenase between a thermophilic and a mesophilic enzymes. Hayashi-Iwasaki Y; Numata K; Yamagishi A; Yutani K; Sakurai M; Tanaka N; Oshima T Protein Sci; 1996 Mar; 5(3):511-6. PubMed ID: 8868488 [TBL] [Abstract][Full Text] [Related]
17. Amino acid substitutions in malate dehydrogenases of piezophilic bacteria isolated from intestinal contents of deep-sea fishes retrieved from the abyssal zone. Saito R; Kato C; Nakayama A J Gen Appl Microbiol; 2006 Feb; 52(1):9-19. PubMed ID: 16598154 [TBL] [Abstract][Full Text] [Related]
18. Increases of heat shock proteins and their mRNAs at high hydrostatic pressure in a deep-sea piezophilic bacterium, Shewanella violacea. Sato H; Nakasone K; Yoshida T; Kato C; Maruyama T Extremophiles; 2015 Jul; 19(4):751-62. PubMed ID: 25982740 [TBL] [Abstract][Full Text] [Related]
19. Comparative study on stabilization mechanism of monomeric cytochrome c Masanari M; Fujii S; Kawahara K; Oki H; Tsujino H; Maruno T; Kobayashi Y; Ohkubo T; Wakai S; Sambongi Y Biosci Biotechnol Biochem; 2016 Dec; 80(12):2365-2370. PubMed ID: 27648635 [TBL] [Abstract][Full Text] [Related]
20. Substitutions of coenzyme-binding, nonpolar residues improve the low-temperature activity of thermophilic dehydrogenases. Hayashi S; Akanuma S; Onuki W; Tokunaga C; Yamagishi A Biochemistry; 2011 Oct; 50(40):8583-93. PubMed ID: 21894900 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]