These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 29630992)

  • 1. Nutrient-limited growth with non-linear cell diffusion as a mechanism for floral pattern formation in yeast biofilms.
    Tam A; Green JEF; Balasuriya S; Tek EL; Gardner JM; Sundstrom JF; Jiranek V; Binder BJ
    J Theor Biol; 2018 Jul; 448():122-141. PubMed ID: 29630992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reaction-diffusion model of nutrient uptake in a biofilm: theory and experiment.
    Petroff AP; Wu TD; Liang B; Mui J; Guerquin-Kern JL; Vali H; Rothman DH; Bosak T
    J Theor Biol; 2011 Nov; 289():90-5. PubMed ID: 21840322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A thin-film extensional flow model for biofilm expansion by sliding motility.
    Tam A; Green JEF; Balasuriya S; Tek EL; Gardner JM; Sundstrom JF; Jiranek V; Binder BJ
    Proc Math Phys Eng Sci; 2019 Sep; 475(2229):20190175. PubMed ID: 31611714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biofilm/Mat assays for budding yeast.
    Cullen PJ
    Cold Spring Harb Protoc; 2015 Feb; 2015(2):172-5. PubMed ID: 25646504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diffusion-Limited Growth of Microbial Colonies.
    Tronnolone H; Tam A; Szenczi Z; Green JEF; Balasuriya S; Tek EL; Gardner JM; Sundstrom JF; Jiranek V; Oliver SG; Binder BJ
    Sci Rep; 2018 Apr; 8(1):5992. PubMed ID: 29662092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variation in pH gradients and FLO11 expression in mat biofilms from environmental isolates of the yeast Saccharomyces cerevisiae.
    Forehand AL; Myagmarsuren D; Chen Z; Murphy HA
    Microbiologyopen; 2022 Apr; 11(2):e1277. PubMed ID: 35478280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Continuum Mathematical Model of Substrate-Mediated Tissue Growth.
    El-Hachem M; McCue SW; Simpson MJ
    Bull Math Biol; 2022 Mar; 84(4):49. PubMed ID: 35237899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early development and quorum sensing in bacterial biofilms.
    Ward JP; King JR; Koerber AJ; Croft JM; Sockett RE; Williams P
    J Math Biol; 2003 Jul; 47(1):23-55. PubMed ID: 12827447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying the dominant growth mechanisms of dimorphic yeast using a lattice-based model.
    Tronnolone H; Gardner JM; Sundstrom JF; Jiranek V; Oliver SG; Binder BJ
    J R Soc Interface; 2017 Sep; 14(134):. PubMed ID: 28954849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mathematical model for nutrient-limited uniaxial growth of a compressible tissue.
    Li K; Gallo AJ; Binder BJ; Green JEF
    J Theor Biol; 2023 Nov; 575():111631. PubMed ID: 37804941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the ability of commercial wine yeasts to form biofilms (mats) and adhere to plastic: implications for the microbiota of the winery environment.
    Tek EL; Sundstrom JF; Gardner JM; Oliver SG; Jiranek V
    FEMS Microbiol Ecol; 2018 Feb; 94(2):. PubMed ID: 29394344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wild Saccharomyces cerevisiae strains display biofilm-like morphology in contact with polyphenols from grapes and wine.
    Sidari R; Caridi A; Howell KS
    Int J Food Microbiol; 2014 Oct; 189():146-52. PubMed ID: 25150672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mathematical analysis of a quorum sensing induced biofilm dispersal model and numerical simulation of hollowing effects.
    Emerenini BO; Sonner S; Eberl HJ
    Math Biosci Eng; 2017 Jun; 14(3):625-653. PubMed ID: 28092956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Traveling wave solutions of a singular Keller-Segel system with logistic source.
    Li T; Wang ZA
    Math Biosci Eng; 2022 Jun; 19(8):8107-8131. PubMed ID: 35801459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new mathematical model for chemotactic bacterial colony growth.
    Alpkvist E; Overgaard NC; Gustafsson S; Heyden A
    Water Sci Technol; 2004; 49(11-12):187-92. PubMed ID: 15303740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bakers' yeast, a model for fungal biofilm formation.
    Reynolds TB; Fink GR
    Science; 2001 Feb; 291(5505):878-81. PubMed ID: 11157168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigating filamentous growth and biofilm/mat formation in budding yeast.
    Cullen PJ
    Cold Spring Harb Protoc; 2015 Mar; 2015(3):235-8. PubMed ID: 25734073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mode-doubling and tripling in reaction-diffusion patterns on growing domains: a piecewise linear model.
    Crampin EJ; Gaffney EA; Maini PK
    J Math Biol; 2002 Feb; 44(2):107-28. PubMed ID: 11942528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative differential proteomics of yeast extracellular matrix: there is more to it than meets the eye.
    Faria-Oliveira F; Carvalho J; Ferreira C; Hernáez ML; Gil C; Lucas C
    BMC Microbiol; 2015 Nov; 15():271. PubMed ID: 26608260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elongation correlates with nutrient deprivation in Pseudomonas aeruginosa-unsaturates biofilms.
    Steinberger RE; Allen AR; Hansa HG; Holden PA
    Microb Ecol; 2002 May; 43(4):416-23. PubMed ID: 12043001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.