BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 29631212)

  • 1. Transcriptome analysis of Jatropha curcas L. flower buds responded to the paclobutrazol treatment.
    Seesangboon A; Gruneck L; Pokawattana T; Eungwanichayapant PD; Tovaranonte J; Popluechai S
    Plant Physiol Biochem; 2018 Jun; 127():276-286. PubMed ID: 29631212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptome of the inflorescence meristems of the biofuel plant Jatropha curcas treated with cytokinin.
    Pan BZ; Chen MS; Ni J; Xu ZF
    BMC Genomics; 2014 Nov; 15(1):974. PubMed ID: 25400171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptome Analysis of Flower Sex Differentiation in Jatropha curcas L. Using RNA Sequencing.
    Xu G; Huang J; Yang Y; Yao YA
    PLoS One; 2016; 11(2):e0145613. PubMed ID: 26848843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomics and relative expression analysis identifies key genes associated with high female to male flower ratio in Jatropha curcas L.
    Gangwar M; Sood H; Chauhan RS
    Mol Biol Rep; 2016 Apr; 43(4):305-22. PubMed ID: 26878857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An ortholog of LEAFY in Jatropha curcas regulates flowering time and floral organ development.
    Tang M; Tao YB; Fu Q; Song Y; Niu L; Xu ZF
    Sci Rep; 2016 Nov; 6():37306. PubMed ID: 27869146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the transcriptional responses in inflorescence buds of Jatropha curcas exposed to cytokinin treatment.
    Chen MS; Pan BZ; Wang GJ; Ni J; Niu L; Xu ZF
    BMC Plant Biol; 2014 Nov; 14():318. PubMed ID: 25433671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative gene expression profile analysis of ovules provides insights into Jatropha curcas L. ovule development.
    Xu G; Huang J; Lei SK; Sun XG; Li X
    Sci Rep; 2019 Nov; 9(1):15973. PubMed ID: 31685957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative transcriptome analysis of gynoecious and monoecious inflorescences reveals regulators involved in male flower development in the woody perennial plant Jatropha curcas.
    Zhao ML; Chen MS; Ni J; Xu CJ; Yang Q; Xu ZF
    Plant Reprod; 2020 Dec; 33(3-4):191-204. PubMed ID: 32997187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and characterization of the Jatropha curcas APETALA1 (JcAP1) promoter conferring preferential expression in inflorescence buds.
    Tao YB; He LL; Niu L; Xu ZF
    Planta; 2016 Aug; 244(2):467-78. PubMed ID: 27095108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flower-Specific Overproduction of Cytokinins Altered Flower Development and Sex Expression in the Perennial Woody Plant
    Ming X; Tao YB; Fu Q; Tang M; He H; Chen MS; Pan BZ; Xu ZF
    Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31963715
    [No Abstract]   [Full Text] [Related]  

  • 11. Analysis of Transcriptional Responses of the Inflorescence Meristems in Jatropha curcas Following Gibberellin Treatment.
    Hui WK; Wang Y; Chen XY; Zayed MZ; Wu GJ
    Int J Mol Sci; 2018 Feb; 19(2):. PubMed ID: 29389867
    [No Abstract]   [Full Text] [Related]  

  • 12. Identification and validation of superior reference gene for gene expression normalization via RT-qPCR in staminate and pistillate flowers of Jatropha curcas - A biodiesel plant.
    Karuppaiya P; Yan XX; Liao W; Wu J; Chen F; Tang L
    PLoS One; 2017; 12(2):e0172460. PubMed ID: 28234941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptome analysis of two inflorescence branching mutants reveals cytokinin is an important regulator in controlling inflorescence architecture in the woody plant Jatropha curcas.
    Chen MS; Zhao ML; Wang GJ; He HY; Bai X; Pan BZ; Fu QT; Tao YB; Tang MY; Martínez-Herrera J; Xu ZF
    BMC Plant Biol; 2019 Nov; 19(1):468. PubMed ID: 31684864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome sequence of Jatropha curcas L., a non-edible biodiesel plant, provides a resource to improve seed-related traits.
    Ha J; Shim S; Lee T; Kang YJ; Hwang WJ; Jeong H; Laosatit K; Lee J; Kim SK; Satyawan D; Lestari P; Yoon MY; Kim MY; Chitikineni A; Tanya P; Somta P; Srinives P; Varshney RK; Lee SH
    Plant Biotechnol J; 2019 Feb; 17(2):517-530. PubMed ID: 30059608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene expression profiling identifies pathways involved in seed maturation of Jatropha curcas.
    Maghuly F; Deák T; Vierlinger K; Pabinger S; Tafer H; Laimer M
    BMC Genomics; 2020 Apr; 21(1):290. PubMed ID: 32272887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. De novo sequencing and comparative transcriptome analysis of the male and hermaphroditic flowers provide insights into the regulation of flower formation in andromonoecious taihangia rupestris.
    Li W; Zhang L; Ding Z; Wang G; Zhang Y; Gong H; Chang T; Zhang Y
    BMC Plant Biol; 2017 Feb; 17(1):54. PubMed ID: 28241786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ectopic Expression of
    Zhao ML; Ni J; Chen MS; Xu ZF
    Int J Mol Sci; 2019 May; 20(9):. PubMed ID: 31052421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integration of phenotypic and transcriptomic data analysis reveals yield-related hub genes in Jatropha curcas inflorescence.
    Govender N; Senan S; Sage EE; Mohamed-Hussein ZA; Mackeen MM; Wickneswari R
    PLoS One; 2018; 13(9):e0203441. PubMed ID: 30240391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ectopic expression of Jatropha curcas APETALA1 (JcAP1) caused early flowering in Arabidopsis, but not in Jatropha.
    Tang M; Tao YB; Xu ZF
    PeerJ; 2016; 4():e1969. PubMed ID: 27168978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptome profile analysis reveals the regulation mechanism of floral sex differentiation in Jatropha curcas L.
    Hui W; Yang Y; Wu G; Peng C; Chen X; Zayed MZ
    Sci Rep; 2017 Nov; 7(1):16421. PubMed ID: 29180629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.