BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 29631212)

  • 21. Inhibition of flowering by gibberellins in the woody plant Jatropha curcas is restored by overexpression of JcFT.
    Huang P; Yang J; Ke J; Cai L; Hu Y; Ni J; Li C; Xu ZF; Tang M
    Plant Sci; 2024 Jul; 344():112100. PubMed ID: 38679393
    [TBL] [Abstract][Full Text] [Related]  

  • 22. De novo transcriptome assembly from flower buds of dioecious, gynomonoecious and chemically masculinized female Coccinia grandis reveals genes associated with sex expression and modification.
    Devani RS; Sinha S; Banerjee J; Sinha RK; Bendahmane A; Banerjee AK
    BMC Plant Biol; 2017 Dec; 17(1):241. PubMed ID: 29233089
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Silencing of the Ortholog of
    Xu CJ; Zhao ML; Chen MS; Xu ZF
    Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33255510
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative transcriptome analysis of nonchilled, chilled, and late-pink bud reveals flowering pathway genes involved in chilling-mediated flowering in blueberry.
    Song GQ; Chen Q
    BMC Plant Biol; 2018 May; 18(1):98. PubMed ID: 29855262
    [TBL] [Abstract][Full Text] [Related]  

  • 25. De novo sequencing of the Hypericum perforatum L. flower transcriptome to identify potential genes that are related to plant reproduction sensu lato.
    Galla G; Vogel H; Sharbel TF; Barcaccia G
    BMC Genomics; 2015 Mar; 16(1):254. PubMed ID: 25887758
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Correlation between development of female flower buds and expression of the CS-ACS2 gene in cucumber plants.
    Saito S; Fujii N; Miyazawa Y; Yamasaki S; Matsuura S; Mizusawa H; Fujita Y; Takahashi H
    J Exp Bot; 2007; 58(11):2897-907. PubMed ID: 17630291
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineering low phorbol ester Jatropha curcas seed by intercepting casbene biosynthesis.
    Li C; Ng A; Xie L; Mao H; Qiu C; Srinivasan R; Yin Z; Hong Y
    Plant Cell Rep; 2016 Jan; 35(1):103-14. PubMed ID: 26441058
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Global analysis of transcriptome responses and gene expression profiles to cold stress of Jatropha curcas L.
    Wang H; Zou Z; Wang S; Gong M
    PLoS One; 2013; 8(12):e82817. PubMed ID: 24349370
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative transcriptome analysis of axillary buds in response to the shoot branching regulators gibberellin A3 and 6-benzyladenine in Jatropha curcas.
    Ni J; Zhao ML; Chen MS; Pan BZ; Tao YB; Xu ZF
    Sci Rep; 2017 Sep; 7(1):11417. PubMed ID: 28900192
    [TBL] [Abstract][Full Text] [Related]  

  • 30. miR172 Regulates both Vegetative and Reproductive Development in the Perennial Woody Plant Jatropha curcas.
    Tang M; Bai X; Niu LJ; Chai X; Chen MS; Xu ZF
    Plant Cell Physiol; 2018 Dec; 59(12):2549-2563. PubMed ID: 30541045
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification and expression analysis of cytokinin metabolic genes
    Cai L; Zhang L; Fu Q; Xu ZF
    PeerJ; 2018; 6():e4812. PubMed ID: 29785355
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transcriptome analysis of the oil-rich seed of the bioenergy crop Jatropha curcas L.
    Costa GG; Cardoso KC; Del Bem LE; Lima AC; Cunha MA; de Campos-Leite L; Vicentini R; Papes F; Moreira RC; Yunes JA; Campos FA; Da Silva MJ
    BMC Genomics; 2010 Aug; 11():462. PubMed ID: 20691070
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Full-Length Transcriptome Survey and Expression Analysis of
    Deng Y; Zheng H; Yan Z; Liao D; Li C; Zhou J; Liao H
    Int J Mol Sci; 2018 Aug; 19(9):. PubMed ID: 30134624
    [TBL] [Abstract][Full Text] [Related]  

  • 34. De novo assembly and transcriptome analysis of five major tissues of Jatropha curcas L. using GS FLX titanium platform of 454 pyrosequencing.
    Natarajan P; Parani M
    BMC Genomics; 2011 Apr; 12():191. PubMed ID: 21492485
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Extended mining of the oil biosynthesis pathway in biofuel plant Jatropha curcas by combined analysis of transcriptome and gene interactome data.
    Zhang X; Li J; Pan BZ; Chen W; Chen M; Tang M; Xu ZF; Liu C
    BMC Bioinformatics; 2021 Aug; 22(Suppl 6):409. PubMed ID: 34407772
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative transcriptome profiling of the fertile and sterile flower buds of a dominant genic male sterile line in sesame (Sesamum indicum L.).
    Liu H; Tan M; Yu H; Li L; Zhou F; Yang M; Zhou T; Zhao Y
    BMC Plant Biol; 2016 Nov; 16(1):250. PubMed ID: 27832742
    [TBL] [Abstract][Full Text] [Related]  

  • 37. JcSEUSS1 negatively regulates reproductive organ development in perennial woody Jatropha curcas.
    Wang J; Bai X; Su Y; Deng H; Cai L; Ming X; Tao YB; He H; Xu ZF; Tang M
    Planta; 2023 Sep; 258(5):88. PubMed ID: 37755517
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transcriptome Analysis of
    He W; Chen Y; Gao M; Zhao Y; Xu Z; Cao P; Zhang Q; Jiao Y; Li H; Wu L; Wang Y
    G3 (Bethesda); 2018 Mar; 8(4):1103-1114. PubMed ID: 29487185
    [TBL] [Abstract][Full Text] [Related]  

  • 39. iTRAQ-based proteomic analysis of fertile and sterile flower buds from a genetic male sterile line 'AB01' in Chinese cabbage (Brassica campestris L. ssp. pekinensis).
    Zhou X; Shi F; Zhou L; Zhou Y; Liu Z; Ji R; Feng H
    J Proteomics; 2019 Jul; 204():103395. PubMed ID: 31146048
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transcriptome profiling of the fertile parent and sterile hybrid in tea plant flower buds.
    Chen L; Qu H; Xia L; Liu Y; Jiang H; Sun Y; Liang M; Jiang C
    Hereditas; 2019; 156():12. PubMed ID: 31019434
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.