These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 29631237)
1. Deep exploitation of refractory organics in anaerobic dynamic membrane bioreactor for volatile fatty acids production from sludge fermentation: Performance and effect of protease catalysis. Liu H; Wang L; Yin B; Fu B; Liu H J Environ Manage; 2018 Jul; 217():478-485. PubMed ID: 29631237 [TBL] [Abstract][Full Text] [Related]
2. Improving volatile fatty acids production by exploiting the residual substrates in post-fermented sludge: Protease catalysis of refractory protein. Yin B; Liu H; Wang Y; Bai J; Liu H; Fu B Bioresour Technol; 2016 Mar; 203():124-31. PubMed ID: 26722812 [TBL] [Abstract][Full Text] [Related]
3. A viable approach for commercial VFAs production from sludge: Liquid fermentation in anaerobic dynamic membrane reactor. Liu H; Wang L; Zhang X; Fu B; Liu H; Li Y; Lu X J Hazard Mater; 2019 Mar; 365():912-920. PubMed ID: 30497045 [TBL] [Abstract][Full Text] [Related]
4. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
5. Improving volatile fatty acid yield from sludge anaerobic fermentation through self-forming dynamic membrane separation. Liu H; Wang Y; Yin B; Zhu Y; Fu B; Liu H Bioresour Technol; 2016 Oct; 218():92-100. PubMed ID: 27347803 [TBL] [Abstract][Full Text] [Related]
6. High rejection rate of polysaccharides by microfiltration benefits Christensenella minuta and acetic acid production in an anaerobic membrane bioreactor for sludge fermentation. Gao X; Zhang Q; Zhu H Bioresour Technol; 2019 Jun; 282():197-201. PubMed ID: 30861449 [TBL] [Abstract][Full Text] [Related]
7. Enzymes catalyzing pre-hydrolysis facilitated the anaerobic fermentation of waste activated sludge with acidogenic and microbiological perspectives. Xin X; He J; Li L; Qiu W Bioresour Technol; 2018 Feb; 250():69-78. PubMed ID: 29153652 [TBL] [Abstract][Full Text] [Related]
8. Effect of diclofenac on the production of volatile fatty acids from anaerobic fermentation of waste activated sludge. Hu J; Zhao J; Wang D; Li X; Zhang D; Xu Q; Peng L; Yang Q; Zeng G Bioresour Technol; 2018 Apr; 254():7-15. PubMed ID: 29413941 [TBL] [Abstract][Full Text] [Related]
9. Acidogenic fermentation of iron-enhanced primary sedimentation sludge under different pH conditions for production of volatile fatty acids. Lin L; Li XY Chemosphere; 2018 Mar; 194():692-700. PubMed ID: 29245135 [TBL] [Abstract][Full Text] [Related]
10. Volatile fatty acids produced by co-fermentation of waste activated sludge and henna plant biomass. Huang J; Zhou R; Chen J; Han W; Chen Y; Wen Y; Tang J Bioresour Technol; 2016 Jul; 211():80-6. PubMed ID: 27003793 [TBL] [Abstract][Full Text] [Related]
11. Influence of sulfadiazine on anaerobic fermentation of waste activated sludge for volatile fatty acids production: Focusing on microbial responses. Xie J; Duan X; Feng L; Yan Y; Wang F; Dong H; Jia R; Zhou Q Chemosphere; 2019 Mar; 219():305-312. PubMed ID: 30543966 [TBL] [Abstract][Full Text] [Related]
12. The relationship between volatile fatty acids accumulation and microbial community succession triggered by excess sludge alkaline fermentation. Li X; Liu G; Liu S; Ma K; Meng L J Environ Manage; 2018 Oct; 223():85-91. PubMed ID: 29906676 [TBL] [Abstract][Full Text] [Related]
13. Continuous waste activated sludge and food waste co-fermentation for synchronously recovering vivianite and volatile fatty acids at different sludge retention times: Performance and microbial response. Wu Y; Cao J; Zhang Q; Xu R; Fang F; Feng Q; Li C; Xue Z; Luo J Bioresour Technol; 2020 Oct; 313():123610. PubMed ID: 32504871 [TBL] [Abstract][Full Text] [Related]
14. Effects of sludge age on anaerobic acidification of waste activated sludge: Volatile fatty acids production and phosphorus release. Chen S; Dai X; Yang D; Dong B J Environ Sci (China); 2021 Jul; 105():11-21. PubMed ID: 34130828 [TBL] [Abstract][Full Text] [Related]
15. Electro-fermentation of iron-enhanced primary sedimentation sludge in a two-chamber bioreactor for product separation and resource recovery. Lin L; Tam LH; Xia X; Li XY Water Res; 2019 Jun; 157():145-154. PubMed ID: 30953849 [TBL] [Abstract][Full Text] [Related]
16. Effect of nonylphenol on volatile fatty acids accumulation during anaerobic fermentation of waste activated sludge. Duan X; Wang X; Xie J; Feng L; Yan Y; Zhou Q Water Res; 2016 Nov; 105():209-217. PubMed ID: 27619497 [TBL] [Abstract][Full Text] [Related]
17. Effect of clarithromycin on the production of volatile fatty acids from waste activated sludge anaerobic fermentation. Huang X; Xu Q; Wu Y; Wang D; Yang Q; Chen F; Wu Y; Pi Z; Chen Z; Li X; Zhong Q Bioresour Technol; 2019 Sep; 288():121598. PubMed ID: 31176944 [TBL] [Abstract][Full Text] [Related]
18. Optimal production of polyhydroxyalkanoates (PHA) in activated sludge fed by volatile fatty acids (VFAs) generated from alkaline excess sludge fermentation. Mengmeng C; Hong C; Qingliang Z; Shirley SN; Jie R Bioresour Technol; 2009 Feb; 100(3):1399-405. PubMed ID: 18945612 [TBL] [Abstract][Full Text] [Related]
19. Volatile fatty acids platform from thermally hydrolysed secondary sewage sludge enhanced through recovered micronutrients from digested sludge. Kumi PJ; Henley A; Shana A; Wilson V; Esteves SR Water Res; 2016 Sep; 100():267-276. PubMed ID: 27206055 [TBL] [Abstract][Full Text] [Related]
20. Volatile fatty acids production from kitchen waste slurry using anaerobic membrane bioreactor via alkaline fermentation with high salinity: Evaluation on process performance and microbial succession. Xiao X; Hu H; Meng X; Huang Z; Feng Y; Gao Q; Ruan W Bioresour Technol; 2024 May; 399():130576. PubMed ID: 38479625 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]