BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 29631320)

  • 1. A Facile Method for Producing Selenocysteine-Containing Proteins.
    Mukai T; Sevostyanova A; Suzuki T; Fu X; Söll D
    Angew Chem Int Ed Engl; 2018 Jun; 57(24):7215-7219. PubMed ID: 29631320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-Specific Incorporation of Selenocysteine Using an Expanded Genetic Code and Palladium-Mediated Chemical Deprotection.
    Liu J; Zheng F; Cheng R; Li S; Rozovsky S; Wang Q; Wang L
    J Am Chem Soc; 2018 Jul; 140(28):8807-8816. PubMed ID: 29984990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-level expression in Escherichia coli of selenocysteine-containing rat thioredoxin reductase utilizing gene fusions with engineered bacterial-type SECIS elements and co-expression with the selA, selB and selC genes.
    Arnér ES; Sarioglu H; Lottspeich F; Holmgren A; Böck A
    J Mol Biol; 1999 Oct; 292(5):1003-16. PubMed ID: 10512699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recoding UAG to selenocysteine in
    Hoffman KS; Chung CZ; Mukai T; Krahn N; Jiang HK; Balasuriya N; O'Donoghue P; Söll D
    RNA; 2023 Sep; 29(9):1400-1410. PubMed ID: 37279998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of Recombinant Mammalian Selenoproteins through Genetic Code Expansion with Photocaged Selenocysteine.
    Peeler JC; Falco JA; Kelemen RE; Abo M; Chartier BV; Edinger LC; Chen J; Chatterjee A; Weerapana E
    ACS Chem Biol; 2020 Jun; 15(6):1535-1540. PubMed ID: 32330002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selenocysteine Insertion at a Predefined UAG Codon in a Release Factor 1 (RF1)-depleted
    Cheng Q; Arnér ES
    J Biol Chem; 2017 Mar; 292(13):5476-5487. PubMed ID: 28193838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expressing recombinant selenoproteins using redefinition of a single UAG codon in an RF1-depleted E. coli host strain.
    Cheng Q; Arnér ESJ
    Methods Enzymol; 2022; 662():95-118. PubMed ID: 35101220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Challenges of site-specific selenocysteine incorporation into proteins by Escherichia coli.
    Fu X; Söll D; Sevostyanova A
    RNA Biol; 2018; 15(4-5):461-470. PubMed ID: 29447106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile Recoding of Selenocysteine in Nature.
    Mukai T; Englert M; Tripp HJ; Miller C; Ivanova NN; Rubin EM; Kyrpides NC; Söll D
    Angew Chem Int Ed Engl; 2016 Apr; 55(17):5337-41. PubMed ID: 26991476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Partitioning between recoding and termination at a stop codon-selenocysteine insertion sequence.
    Kotini SB; Peske F; Rodnina MV
    Nucleic Acids Res; 2015 Jul; 43(13):6426-38. PubMed ID: 26040702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coding from a distance: dissection of the mRNA determinants required for the incorporation of selenocysteine into protein.
    Heider J; Baron C; Böck A
    EMBO J; 1992 Oct; 11(10):3759-66. PubMed ID: 1396569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient Expression of Glutathione Peroxidase with Chimeric tRNA in Amber-less Escherichia coli.
    Fan Z; Song J; Guan T; Lv X; Wei J
    ACS Synth Biol; 2018 Jan; 7(1):249-257. PubMed ID: 28866886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Introducing Selenocysteine into Recombinant Proteins in Escherichia coli.
    Chung CZ; Miller C; Söll D; Krahn N
    Curr Protoc; 2021 Feb; 1(2):e54. PubMed ID: 33566458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using selenocysteine-specific reporters to screen for efficient tRNA
    Chung CZ; Söll D; Krahn N
    Methods Enzymol; 2022; 662():63-93. PubMed ID: 35101219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The nature of the minimal 'selenocysteine insertion sequence' (SECIS) in Escherichia coli.
    Liu Z; Reches M; Groisman I; Engelberg-Kulka H
    Nucleic Acids Res; 1998 Feb; 26(4):896-902. PubMed ID: 9461445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overproduction of a selenocysteine-containing polypeptide in Escherichia coli: the fdhF gene product.
    Chen GT; Axley MJ; Hacia J; Inouye M
    Mol Microbiol; 1992 Mar; 6(6):781-5. PubMed ID: 1533438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineered mRNA-ribosome fusions for facile biosynthesis of selenoproteins.
    Thaenert A; Sevostyanova A; Chung CZ; Vargas-Rodriguez O; Melnikov SV; Söll D
    Proc Natl Acad Sci U S A; 2024 Mar; 121(11):e2321700121. PubMed ID: 38442159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The selenocysteine incorporation machinery allows the dual use of sense codons: a new strategy for expanding the genetic code?
    Stafforst T
    Chembiochem; 2014 Feb; 15(3):356-8. PubMed ID: 24376077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of the Escherichia coli fdhF mRNA hairpin promoting selenocysteine incorporation with the ribosome.
    Hüttenhofer A; Heider J; Böck A
    Nucleic Acids Res; 1996 Oct; 24(20):3903-10. PubMed ID: 8918790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. UGA codon position affects the efficiency of selenocysteine incorporation into glutathione peroxidase-1.
    Wen W; Weiss SL; Sunde RA
    J Biol Chem; 1998 Oct; 273(43):28533-41. PubMed ID: 9774484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.