These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 29631429)

  • 1. Engineering microbes for direct fermentation of cellulose to bioethanol.
    Liu H; Sun J; Chang JS; Shukla P
    Crit Rev Biotechnol; 2018 Nov; 38(7):1089-1105. PubMed ID: 29631429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Progress and strategies on bioethanol production from lignocellulose by consolidated bioprocessing (CBP) using Saccharomyces cerevisiae].
    Xu L; Shen Y; Bao X
    Sheng Wu Gong Cheng Xue Bao; 2010 Jul; 26(7):870-9. PubMed ID: 20954386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement of cell-tethered cellulase activity in recombinant strains of Saccharomyces cerevisiae.
    Chetty BJ; Inokuma K; Hasunuma T; van Zyl WH; den Haan R
    Appl Microbiol Biotechnol; 2022 Sep; 106(18):6347-6361. PubMed ID: 35951080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Consolidated bioprocessing of cellulosic biomass: an update.
    Lynd LR; van Zyl WH; McBride JE; Laser M
    Curr Opin Biotechnol; 2005 Oct; 16(5):577-83. PubMed ID: 16154338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering.
    Hasunuma T; Kondo A
    Biotechnol Adv; 2012; 30(6):1207-18. PubMed ID: 22085593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploiting strain diversity and rational engineering strategies to enhance recombinant cellulase secretion by Saccharomyces cerevisiae.
    Davison SA; den Haan R; van Zyl WH
    Appl Microbiol Biotechnol; 2020 Jun; 104(12):5163-5184. PubMed ID: 32337628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ethanol production from acid- and alkali-pretreated corncob by endoglucanase and β-glucosidase co-expressing Saccharomyces cerevisiae subject to the expression of heterologous genes and nutrition added.
    Feng C; Zou S; Liu C; Yang H; Zhang K; Ma Y; Hong J; Zhang M
    World J Microbiol Biotechnol; 2016 May; 32(5):86. PubMed ID: 27038956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering of Saccharomyces cerevisiae as a consolidated bioprocessing host to produce cellulosic ethanol: Recent advancements and current challenges.
    Sharma J; Kumar V; Prasad R; Gaur NA
    Biotechnol Adv; 2022; 56():107925. PubMed ID: 35151789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-fermentation using Recombinant Saccharomyces cerevisiae Yeast Strains Hyper-secreting Different Cellulases for the Production of Cellulosic Bioethanol.
    Lee CR; Sung BH; Lim KM; Kim MJ; Sohn MJ; Bae JH; Sohn JH
    Sci Rep; 2017 Jun; 7(1):4428. PubMed ID: 28667330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors affecting yeast ethanol tolerance and fermentation efficiency.
    Vamvakas SS; Kapolos J
    World J Microbiol Biotechnol; 2020 Jul; 36(8):114. PubMed ID: 32656576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct fermentation of amorphous cellulose to ethanol by engineered Saccharomyces cerevisiae coexpressing Trichoderma viride EG3 and BGL1.
    Gong Y; Tang G; Wang M; Li J; Xiao W; Lin J; Liu Z
    J Gen Appl Microbiol; 2014; 60(5):198-206. PubMed ID: 25420425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement of ethanol production from crystalline cellulose via optimizing cellulase ratios in cellulolytic Saccharomyces cerevisiae.
    Liu Z; Inokuma K; Ho SH; den Haan R; van Zyl WH; Hasunuma T; Kondo A
    Biotechnol Bioeng; 2017 Jun; 114(6):1201-1207. PubMed ID: 28112385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endowing non-cellulolytic microorganisms with cellulolytic activity aiming for consolidated bioprocessing.
    Yamada R; Hasunuma T; Kondo A
    Biotechnol Adv; 2013 Nov; 31(6):754-63. PubMed ID: 23473971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellulolytic enzyme production and enzymatic hydrolysis for second-generation bioethanol production.
    Wang M; Li Z; Fang X; Wang L; Qu Y
    Adv Biochem Eng Biotechnol; 2012; 128():1-24. PubMed ID: 22231654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Consolidated bioprocessing for bioethanol production by metabolically engineered cellulolytic fungus Myceliophthora thermophila.
    Zhang Y; Sun T; Wu T; Li J; Hu D; Liu D; Li J; Tian C
    Metab Eng; 2023 Jul; 78():192-199. PubMed ID: 37348810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae.
    van Zyl WH; Lynd LR; den Haan R; McBride JE
    Adv Biochem Eng Biotechnol; 2007; 108():205-35. PubMed ID: 17846725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol.
    Wen F; Sun J; Zhao H
    Appl Environ Microbiol; 2010 Feb; 76(4):1251-60. PubMed ID: 20023102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellodextrin transport in yeast for improved biofuel production.
    Galazka JM; Tian C; Beeson WT; Martinez B; Glass NL; Cate JH
    Science; 2010 Oct; 330(6000):84-6. PubMed ID: 20829451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plant cell walls to ethanol.
    Jordan DB; Bowman MJ; Braker JD; Dien BS; Hector RE; Lee CC; Mertens JA; Wagschal K
    Biochem J; 2012 Mar; 442(2):241-52. PubMed ID: 22329798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Designing industrial yeasts for the consolidated bioprocessing of starchy biomass to ethanol.
    Favaro L; Jooste T; Basaglia M; Rose SH; Saayman M; Görgens JF; Casella S; van Zyl WH
    Bioengineered; 2013; 4(2):97-102. PubMed ID: 22989992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.