These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

524 related articles for article (PubMed ID: 29631753)

  • 1. Intrinsically motivated reinforcement learning for human-robot interaction in the real-world.
    Qureshi AH; Nakamura Y; Yoshikawa Y; Ishiguro H
    Neural Netw; 2018 Nov; 107():23-33. PubMed ID: 29631753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrinsic interactive reinforcement learning - Using error-related potentials for real world human-robot interaction.
    Kim SK; Kirchner EA; Stefes A; Kirchner F
    Sci Rep; 2017 Dec; 7(1):17562. PubMed ID: 29242555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reinforcement Learning Approaches in Social Robotics.
    Akalin N; Loutfi A
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33670257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Bio-inspired Motivational Decision Making System for Social Robots Based on the Perception of the User.
    Maroto-Gómez M; Castro-González Á; Castillo JC; Malfaz M; Salichs MA
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30115836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robot-Assisted Pedestrian Regulation Based on Deep Reinforcement Learning.
    Wan Z; Jiang C; Fahad M; Ni Z; Guo Y; He H
    IEEE Trans Cybern; 2020 Apr; 50(4):1669-1682. PubMed ID: 30475740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Codevelopmental learning between human and humanoid robot using a dynamic neural-network model.
    Tani J; Nishimoto R; Namikawa J; Ito M
    IEEE Trans Syst Man Cybern B Cybern; 2008 Feb; 38(1):43-59. PubMed ID: 18270081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep Q-network for social robotics using emotional social signals.
    Belo JPR; Azevedo H; Ramos JJG; Romero RAF
    Front Robot AI; 2022; 9():880547. PubMed ID: 36226257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modular deep reinforcement learning from reward and punishment for robot navigation.
    Wang J; Elfwing S; Uchibe E
    Neural Netw; 2021 Mar; 135():115-126. PubMed ID: 33383526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Auditory learning: a developmental method.
    Zhang Y; Weng J; Hwang WS
    IEEE Trans Neural Netw; 2005 May; 16(3):601-16. PubMed ID: 15940990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Persuasive robots should avoid authority: The effects of formal and real authority on persuasion in human-robot interaction.
    Saunderson SP; Nejat G
    Sci Robot; 2021 Sep; 6(58):eabd5186. PubMed ID: 34550717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimized Assistive Human-Robot Interaction Using Reinforcement Learning.
    Modares H; Ranatunga I; Lewis FL; Popa DO
    IEEE Trans Cybern; 2016 Mar; 46(3):655-67. PubMed ID: 25823055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Do a robot's social skills and its objection discourage interactants from switching the robot off?
    Horstmann AC; Bock N; Linhuber E; Szczuka JM; Straßmann C; Krämer NC
    PLoS One; 2018; 13(7):e0201581. PubMed ID: 30063750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reinforcement learning for a biped robot based on a CPG-actor-critic method.
    Nakamura Y; Mori T; Sato MA; Ishii S
    Neural Netw; 2007 Aug; 20(6):723-35. PubMed ID: 17412559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interacting with an artificial partner: modeling the role of emotional aspects.
    Cattinelli I; Goldwurm M; Borghese NA
    Biol Cybern; 2008 Dec; 99(6):473-89. PubMed ID: 18813942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kernel dynamic policy programming: Applicable reinforcement learning to robot systems with high dimensional states.
    Cui Y; Matsubara T; Sugimoto K
    Neural Netw; 2017 Oct; 94():13-23. PubMed ID: 28732231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrinsic motivation and mental replay enable efficient online adaptation in stochastic recurrent networks.
    Tanneberg D; Peters J; Rueckert E
    Neural Netw; 2019 Jan; 109():67-80. PubMed ID: 30408695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intuitive control of mobile robots: an architecture for autonomous adaptive dynamic behaviour integration.
    Melidis C; Iizuka H; Marocco D
    Cogn Process; 2018 May; 19(2):245-264. PubMed ID: 28585090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning with convolutional neural network for objective skill evaluation in robot-assisted surgery.
    Wang Z; Majewicz Fey A
    Int J Comput Assist Radiol Surg; 2018 Dec; 13(12):1959-1970. PubMed ID: 30255463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Why Robots Should Be Social: Enhancing Machine Learning through Social Human-Robot Interaction.
    de Greeff J; Belpaeme T
    PLoS One; 2015; 10(9):e0138061. PubMed ID: 26422143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human-robot skills transfer interfaces for a flexible surgical robot.
    Calinon S; Bruno D; Malekzadeh MS; Nanayakkara T; Caldwell DG
    Comput Methods Programs Biomed; 2014 Sep; 116(2):81-96. PubMed ID: 24491285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.