BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 29632200)

  • 1. Fermentation of dihydroxyacetone by engineered
    Wang L; Chauliac D; Rhee MS; Panneerselvam A; Ingram LO; Shanmugam KT
    Proc Natl Acad Sci U S A; 2018 Apr; 115(17):4381-4386. PubMed ID: 29632200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dihydroxyacetone production in an engineered Escherichia coli through expression of Corynebacterium glutamicum dihydroxyacetone phosphate dephosphorylase.
    Jain VK; Tear CJ; Lim CY
    Enzyme Microb Technol; 2016 May; 86():39-44. PubMed ID: 26992791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semi-industrial scale (30 m
    Fu X; Wang Y; Wang J; Garza E; Manow R; Zhou S
    J Ind Microbiol Biotechnol; 2017 Feb; 44(2):221-228. PubMed ID: 27900494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical and Metabolic Controls on Dihydroxyacetone Metabolism Lead to Suboptimal Growth of Escherichia coli.
    Peiro C; Millard P; de Simone A; Cahoreau E; Peyriga L; Enjalbert B; Heux S
    Appl Environ Microbiol; 2019 Aug; 85(15):. PubMed ID: 31126940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Production of L-lactic acid from pentose by a genetically engineered Escherichia coli].
    Zhao J; Xu L; Wang Y; Zhao X; Wang J
    Wei Sheng Wu Xue Bao; 2013 Apr; 53(4):328-37. PubMed ID: 23858707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolutionary engineering of Escherichia coli for improved anaerobic growth in minimal medium accelerated lactate production.
    Wang B; Zhang X; Yu X; Cui Z; Wang Z; Chen T; Zhao X
    Appl Microbiol Biotechnol; 2019 Mar; 103(5):2155-2170. PubMed ID: 30623201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methylglyoxal bypass identified as source of chiral contamination in l(+) and d(-)-lactate fermentations by recombinant Escherichia coli.
    Grabar TB; Zhou S; Shanmugam KT; Yomano LP; Ingram LO
    Biotechnol Lett; 2006 Oct; 28(19):1527-35. PubMed ID: 16868860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing enzyme properties to enhance dihydroxyacetone production via methylglyoxal biosensor development.
    Zhang K; Li M; Wang J; Huang G; Ma K; Peng J; Lin H; Zhang C; Wang H; Zhan T; Sun Z; Zhang X
    Microb Cell Fact; 2024 May; 23(1):153. PubMed ID: 38796416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redirection of the central metabolism of Klebsiella pneumoniae towards dihydroxyacetone production.
    Sun S; Wang Y; Shu L; Lu X; Wang Q; Zhu C; Shi J; Lye GJ; Baganz F; Hao J
    Microb Cell Fact; 2021 Jun; 20(1):123. PubMed ID: 34187467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Homofermentative production of D-lactic acid from sucrose by a metabolically engineered Escherichia coli.
    Wang Y; Tian T; Zhao J; Wang J; Yan T; Xu L; Liu Z; Garza E; Iverson A; Manow R; Finan C; Zhou S
    Biotechnol Lett; 2012 Nov; 34(11):2069-75. PubMed ID: 22791225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of a novel d-lactate producing pathway from dihydroxyacetone phosphate of the Calvin cycle in cyanobacterium, Synechococcus elongatus PCC 7942.
    Hirokawa Y; Goto R; Umetani Y; Hanai T
    J Biosci Bioeng; 2017 Jul; 124(1):54-61. PubMed ID: 28325659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Escherichia coli strains engineered for homofermentative production of D-lactic acid from glycerol.
    Mazumdar S; Clomburg JM; Gonzalez R
    Appl Environ Microbiol; 2010 Jul; 76(13):4327-36. PubMed ID: 20472739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dihydroxyacetone detoxification in Saccharomyces cerevisiae involves formaldehyde dissimilation.
    Molin M; Blomberg A
    Mol Microbiol; 2006 May; 60(4):925-38. PubMed ID: 16677304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Artificial Biosynthetic Pathway for 2-Amino-1,3-Propanediol Production Using Metabolically Engineered Escherichia coli.
    Luo Y; Zhao Q; Liu Q; Feng Y
    ACS Synth Biol; 2019 Mar; 8(3):548-556. PubMed ID: 30781944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic Engineering of Escherichia coli for d-Lactate Production from Crude Glycerol.
    Wang ZW; Saini M; Lin LJ; Chiang CJ; Chao YP
    J Agric Food Chem; 2015 Nov; 63(43):9583-9. PubMed ID: 26477354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering and adaptive evolution of Escherichia coli W for L-lactic acid fermentation from molasses and corn steep liquor without additional nutrients.
    Wang Y; Li K; Huang F; Wang J; Zhao J; Zhao X; Garza E; Manow R; Grayburn S; Zhou S
    Bioresour Technol; 2013 Nov; 148():394-400. PubMed ID: 24063823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel whole-phase succinate fermentation strategy with high volumetric productivity in engineered Escherichia coli.
    Li Y; Li M; Zhang X; Yang P; Liang Q; Qi Q
    Bioresour Technol; 2013 Dec; 149():333-40. PubMed ID: 24125798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Limited oxygen conditions as an approach to scale-up and improve D and L-lactic acid production in mineral media and avocado seed hydrolysates with metabolically engineered Escherichia coli.
    Sierra-Ibarra E; Leal-Reyes LJ; Huerta-Beristain G; Hernández-Orihuela AL; Gosset G; Martínez-Antonio A; Martinez A
    Bioprocess Biosyst Eng; 2021 Feb; 44(2):379-389. PubMed ID: 33029675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anaerobic growth of Escherichia coli on glycerol by importing genes of the dha regulon from Klebsiella pneumoniae.
    Sprenger GA; Hammer BA; Johnson EA; Lin EC
    J Gen Microbiol; 1989 May; 135(5):1255-62. PubMed ID: 2559947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pilot scale demonstration of D-lactic acid fermentation facilitated by Ca(OH)2 using a metabolically engineered Escherichia coli.
    Liu Y; Gao W; Zhao X; Wang J; Garza E; Manow R; Zhou S
    Bioresour Technol; 2014 Oct; 169():559-565. PubMed ID: 25103032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.