BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 29632310)

  • 21. Interfacial nanomechanical heterogeneity of the E. coli biofilm matrix.
    Kreis CT; Sullan RMA
    Nanoscale; 2020 Aug; 12(32):16819-16830. PubMed ID: 32760962
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effects of extrinsic factors on the structural and mechanical properties of Pseudomonas fluorescens biofilms: A combined study of nutrient concentrations and shear conditions.
    Allen A; Habimana O; Casey E
    Colloids Surf B Biointerfaces; 2018 May; 165():127-134. PubMed ID: 29471219
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization and application of a flow system for in vitro multispecies oral biofilm formation.
    Blanc V; Isabal S; Sánchez MC; Llama-Palacios A; Herrera D; Sanz M; León R
    J Periodontal Res; 2014 Jun; 49(3):323-32. PubMed ID: 23815431
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Corrosion of the intra-oral magnets by multi-species biofilms in the presence and absence of sucrose.
    Wilson M; Patel H; Kpendema H; Noar JH; Hunt NP; Mordan NJ
    Biomaterials; 1997 Jan; 18(1):53-7. PubMed ID: 9003897
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Experimental Models of Oral Biofilms Developed on Inert Substrates: A Review of the Literature.
    Darrene LN; Cecile B
    Biomed Res Int; 2016; 2016():7461047. PubMed ID: 27699173
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Contributions of Candida albicans Dimorphism, Adhesive Interactions, and Extracellular Matrix to the Formation of Dual-Species Biofilms with Streptococcus gordonii.
    Montelongo-Jauregui D; Saville SP; Lopez-Ribot JL
    mBio; 2019 Jun; 10(3):. PubMed ID: 31213561
    [TBL] [Abstract][Full Text] [Related]  

  • 27.
    Palmer SR; Ren Z; Hwang G; Liu Y; Combs A; Söderström B; Lara Vasquez P; Khosravi Y; Brady LJ; Koo H; Stoodley P
    J Bacteriol; 2019 Jan; 201(1):. PubMed ID: 30322852
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of hydrodynamic conditions on the composition, spatiotemporal distribution of different extracellular polymeric substances and the architecture of biofilms.
    Pan M; Li H; Han X; Ma W; Li X; Guo Q; Yang B; Ding C; Ma Y
    Chemosphere; 2022 Nov; 307(Pt 4):135965. PubMed ID: 35963380
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Linking composition of extracellular polymeric substances (EPS) to the physical structure and hydraulic resistance of membrane biofilms.
    Desmond P; Best JP; Morgenroth E; Derlon N
    Water Res; 2018 Apr; 132():211-221. PubMed ID: 29331909
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanoscale characterization of effect of L-arginine on Streptococcus mutans biofilm adhesion by atomic force microscopy.
    Sharma S; Lavender S; Woo J; Guo L; Shi W; Kilpatrick-Liverman L; Gimzewski JK
    Microbiology (Reading); 2014 Jul; 160(Pt 7):1466-1473. PubMed ID: 24763427
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of inoculum source and fluid shear force on the development of in vitro oral multispecies biofilms.
    Fernández CE; Aspiras MB; Dodds MW; González-Cabezas C; Rickard AH
    J Appl Microbiol; 2017 Mar; 122(3):796-808. PubMed ID: 27981713
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dietary sugars modulate bacterial-fungal interactions in saliva and inter-kingdom biofilm formation on apatitic surface.
    Negrini TC; Ren Z; Miao Y; Kim D; Simon-Soro Á; Liu Y; Koo H; Arthur RA
    Front Cell Infect Microbiol; 2022; 12():993640. PubMed ID: 36439211
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigation on adhesion of Sulfobacillus thermosulfidooxidans via atomic force microscopy equipped with mineral probes.
    Li Q; Becker T; Zhang R; Xiao T; Sand W
    Colloids Surf B Biointerfaces; 2019 Jan; 173():639-646. PubMed ID: 30368211
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Determination of mechanical properties of biofilms by modelling the deformation measured using optical coherence tomography.
    Picioreanu C; Blauert F; Horn H; Wagner M
    Water Res; 2018 Nov; 145():588-598. PubMed ID: 30199803
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sucrose-mediated formation and adhesion strength of
    Waldman LJ; Butera T; Boyd JD; Grady ME
    Biofilm; 2023 Dec; 6():100143. PubMed ID: 37534044
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural changes in S. epidermidis biofilms after transmission between stainless steel surfaces.
    Gusnaniar N; Sjollema J; Nuryastuti T; Peterson BW; van de Belt-Gritter B; de Jong ED; van der Mei HC; Busscher HJ
    Biofouling; 2017 Oct; 33(9):712-721. PubMed ID: 28868925
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Time-resolved biofilm deformation measurements using optical coherence tomography.
    Blauert F; Horn H; Wagner M
    Biotechnol Bioeng; 2015 Sep; 112(9):1893-905. PubMed ID: 25786671
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nosocomial pathogen biofilms on biomaterials: Different growth medium conditions and components of biofilms produced in vitro.
    Solis-Velazquez OA; Gutiérrez-Lomelí M; Guerreo-Medina PJ; Rosas-García ML; Iñiguez-Moreno M; Avila-Novoa MG
    J Microbiol Immunol Infect; 2021 Dec; 54(6):1038-1047. PubMed ID: 32680693
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Response of Simulated Drinking Water Biofilm Mechanical and Structural Properties to Long-Term Disinfectant Exposure.
    Shen Y; Huang C; Monroy GL; Janjaroen D; Derlon N; Lin J; Espinosa-Marzal R; Morgenroth E; Boppart SA; Ashbolt NJ; Liu WT; Nguyen TH
    Environ Sci Technol; 2016 Feb; 50(4):1779-87. PubMed ID: 26756120
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanics of biofilms formed of bacteria with fimbriae appendages.
    Jin X; Marshall JS
    PLoS One; 2020; 15(12):e0243280. PubMed ID: 33290393
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.