BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 29632713)

  • 21. Expression of epithelial-mesenchymal transition-related markers in triple-negative breast cancer: ZEB1 as a potential biomarker for poor clinical outcome.
    Jang MH; Kim HJ; Kim EJ; Chung YR; Park SY
    Hum Pathol; 2015 Sep; 46(9):1267-74. PubMed ID: 26170011
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Epithelial to Mesenchymal Transition Regulates Surface PD-L1 via CMTM6 and CMTM7 Induction in Breast Cancer.
    Xiao M; Hasmim M; Lequeux A; Moer KV; Tan TZ; Gilles C; Hollier BG; Thiery JP; Berchem G; Janji B; Noman MZ
    Cancers (Basel); 2021 Mar; 13(5):. PubMed ID: 33803139
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sodium Channel Na
    Gradek F; Lopez-Charcas O; Chadet S; Poisson L; Ouldamer L; Goupille C; Jourdan ML; Chevalier S; Moussata D; Besson P; Roger S
    Sci Rep; 2019 Dec; 9(1):18652. PubMed ID: 31819138
    [TBL] [Abstract][Full Text] [Related]  

  • 24. MiR-652 inhibits acidic microenvironment-induced epithelial-mesenchymal transition of pancreatic cancer cells by targeting ZEB1.
    Deng S; Li X; Niu Y; Zhu S; Jin Y; Deng S; Chen J; Liu Y; He C; Yin T; Yang Z; Tao J; Xiong J; Wu H; Wang C; Zhao G
    Oncotarget; 2015 Nov; 6(37):39661-75. PubMed ID: 26498682
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel ZEB1/HAS2 positive feedback loop promotes EMT in breast cancer.
    Preca BT; Bajdak K; Mock K; Lehmann W; Sundararajan V; Bronsert P; Matzge-Ogi A; Orian-Rousseau V; Brabletz S; Brabletz T; Maurer J; Stemmler MP
    Oncotarget; 2017 Feb; 8(7):11530-11543. PubMed ID: 28086235
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functional characterization of the selective pan-allele anti-SIRPα antibody ADU-1805 that blocks the SIRPα-CD47 innate immune checkpoint.
    Voets E; Paradé M; Lutje Hulsik D; Spijkers S; Janssen W; Rens J; Reinieren-Beeren I; van den Tillaart G; van Duijnhoven S; Driessen L; Habraken M; van Zandvoort P; Kreijtz J; Vink P; van Elsas A; van Eenennaam H
    J Immunother Cancer; 2019 Dec; 7(1):340. PubMed ID: 31801627
    [TBL] [Abstract][Full Text] [Related]  

  • 27. RAE1 mediated ZEB1 expression promotes epithelial-mesenchymal transition in breast cancer.
    Oh JH; Lee JY; Yu S; Cho Y; Hur S; Nam KT; Kim MH
    Sci Rep; 2019 Feb; 9(1):2977. PubMed ID: 30814639
    [TBL] [Abstract][Full Text] [Related]  

  • 28. GRHL2 inhibits colorectal cancer progression and metastasis via oppressing epithelial-mesenchymal transition.
    Yang Z; Wu D; Chen Y; Min Z; Quan Y
    Cancer Biol Ther; 2019; 20(9):1195-1205. PubMed ID: 31063022
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MEK1 Inhibitor Combined with Irradiation Reduces Migration of Breast Cancer Cells Including miR-221 and ZEB1 EMT Marker Expression.
    Anastasov N; Hirmer E; Klenner M; Ott J; Falkenberg N; Bao X; Mutschelknaus L; Moertl S; Combs S; Atkinson MJ; Schmid T
    Cancers (Basel); 2020 Dec; 12(12):. PubMed ID: 33327491
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DACH1 inhibits SNAI1-mediated epithelial-mesenchymal transition and represses breast carcinoma metastasis.
    Zhao F; Wang M; Li S; Bai X; Bi H; Liu Y; Ao X; Jia Z; Wu H
    Oncogenesis; 2015 Mar; 4(3):e143. PubMed ID: 25775416
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MicroRNA-182 drives colonization and macroscopic metastasis via targeting its suppressor SNAI1 in breast cancer.
    Zhan Y; Li X; Liang X; Li L; Cao B; Wang B; Ma J; Ding F; Wang X; Pang D; Liu Z
    Oncotarget; 2017 Jan; 8(3):4629-4641. PubMed ID: 27894095
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pterostilbene inhibits triple-negative breast cancer metastasis via inducing microRNA-205 expression and negatively modulates epithelial-to-mesenchymal transition.
    Su CM; Lee WH; Wu AT; Lin YK; Wang LS; Wu CH; Yeh CT
    J Nutr Biochem; 2015 Jun; 26(6):675-85. PubMed ID: 25792283
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CD47-signal regulatory protein α signaling system and its application to cancer immunotherapy.
    Murata Y; Saito Y; Kotani T; Matozaki T
    Cancer Sci; 2018 Aug; 109(8):2349-2357. PubMed ID: 29873856
    [TBL] [Abstract][Full Text] [Related]  

  • 34. MiR-200a negatively regulates TGF-β
    Guo R; Hao G; Bao Y; Xiao J; Zhan X; Shi X; Luo L; Zhou J; Chen Q; Wei X
    Am J Physiol Renal Physiol; 2018 Jun; 314(6):F1087-F1095. PubMed ID: 29357421
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Targeting CD47 in Anaplastic Thyroid Carcinoma Enhances Tumor Phagocytosis by Macrophages and Is a Promising Therapeutic Strategy.
    Schürch CM; Roelli MA; Forster S; Wasmer MH; Brühl F; Maire RS; Di Pancrazio S; Ruepp MD; Giger R; Perren A; Schmitt AM; Krebs P; Charles RP; Dettmer MS
    Thyroid; 2019 Jul; 29(7):979-992. PubMed ID: 30938231
    [No Abstract]   [Full Text] [Related]  

  • 36. Selective Blockade of the Ubiquitous Checkpoint Receptor CD47 Is Enabled by Dual-Targeting Bispecific Antibodies.
    Dheilly E; Moine V; Broyer L; Salgado-Pires S; Johnson Z; Papaioannou A; Cons L; Calloud S; Majocchi S; Nelson R; Rousseau F; Ferlin W; Kosco-Vilbois M; Fischer N; Masternak K
    Mol Ther; 2017 Feb; 25(2):523-533. PubMed ID: 28153099
    [TBL] [Abstract][Full Text] [Related]  

  • 37. SNAI1 recruits HDAC1 to suppress SNAI2 transcription during epithelial to mesenchymal transition.
    Sundararajan V; Tan M; Tan TZ; Ye J; Thiery JP; Huang RY
    Sci Rep; 2019 Jun; 9(1):8295. PubMed ID: 31165775
    [TBL] [Abstract][Full Text] [Related]  

  • 38. LincK contributes to breast tumorigenesis by promoting proliferation and epithelial-to-mesenchymal transition.
    Li J; Hao Y; Mao W; Xue X; Xu P; Liu L; Yuan J; Zhang D; Li N; Chen H; Zhao L; Sun Z; Luo J; Chen R; Zhao RC
    J Hematol Oncol; 2019 Feb; 12(1):19. PubMed ID: 30795783
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Valproic acid promotes the epithelial-to-mesenchymal transition of breast cancer cells through stabilization of Snail and transcriptional upregulation of Zeb1.
    Zhang S; Tang Z; Qing B; Tang R; Duan Q; Ding S; Deng D
    Eur J Pharmacol; 2019 Dec; 865():172745. PubMed ID: 31639340
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The CD47-SIRPα signaling axis as an innate immune checkpoint in cancer.
    Matlung HL; Szilagyi K; Barclay NA; van den Berg TK
    Immunol Rev; 2017 Mar; 276(1):145-164. PubMed ID: 28258703
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.