These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 29632886)

  • 1. Pendant Hydrogen-Bond Donors in Cobalt Catalysts Independently Enhance CO
    Chapovetsky A; Welborn M; Luna JM; Haiges R; Miller TF; Marinescu SC
    ACS Cent Sci; 2018 Mar; 4(3):397-404. PubMed ID: 29632886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Moving protons with pendant amines: proton mobility in a nickel catalyst for oxidation of hydrogen.
    O'Hagan M; Shaw WJ; Raugei S; Chen S; Yang JY; Kilgore UJ; DuBois DL; Bullock RM
    J Am Chem Soc; 2011 Sep; 133(36):14301-12. PubMed ID: 21595478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular electrocatalysts for oxidation of hydrogen using earth-abundant metals: shoving protons around with proton relays.
    Bullock RM; Helm ML
    Acc Chem Res; 2015 Jul; 48(7):2017-26. PubMed ID: 26079983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Cobalt Complexes with Pendant Amines for Selective Electrocatalytic Reduction of Carbon Dioxide to Formic Acid.
    Roy S; Sharma B; Pécaut J; Simon P; Fontecave M; Tran PD; Derat E; Artero V
    J Am Chem Soc; 2017 Mar; 139(10):3685-3696. PubMed ID: 28206761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of molecular electrocatalysts for energy storage.
    DuBois DL
    Inorg Chem; 2014 Apr; 53(8):3935-60. PubMed ID: 24555579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of molecular electrocatalysts for CO2 reduction and H2 production/oxidation.
    Rakowski DuBois M; DuBois DL
    Acc Chem Res; 2009 Dec; 42(12):1974-82. PubMed ID: 19645445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronically Modified Cobalt Aminopyridine Complexes Reveal an Orthogonal Axis for Catalytic Optimization for CO
    Chapovetsky A; Liu JJ; Welborn M; Luna JM; Do T; Haiges R; Miller Iii TF; Marinescu SC
    Inorg Chem; 2020 Sep; 59(18):13709-13718. PubMed ID: 32866380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comment on "New insights in the electrocatalytic proton reduction and hydrogen oxidation by bioinspired catalysts: a DFT investigation".
    Dupuis M; Chen S; Raugei S; DuBois DL; Bullock RM
    J Phys Chem A; 2011 May; 115(18):4861-5. PubMed ID: 21504191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioinspired Design and Computational Prediction of Iron Complexes with Pendant Amines for the Production of Methanol from CO2 and H2.
    Chen X; Yang X
    J Phys Chem Lett; 2016 Mar; 7(6):1035-41. PubMed ID: 26937854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Breaking bonds with electrons and protons. Models and examples.
    Costentin C; Robert M; Savéant JM; Tard C
    Acc Chem Res; 2014 Jan; 47(1):271-80. PubMed ID: 24016042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elucidating the origins of enhanced CO
    Tignor SE; Shaw TW; Bocarsly AB
    Dalton Trans; 2019 Sep; 48(33):12730-12737. PubMed ID: 31389441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational Design of Iron Diphosphine Complexes with Pendant Amines for Hydrogenation of CO2 to Methanol: A Mimic of [NiFe] Hydrogenase.
    Chen X; Jing Y; Yang X
    Chemistry; 2016 Jun; 22(26):8897-902. PubMed ID: 27225505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Catalysts with Diphosphine Ligands Containing Pendant Amines.
    Wiedner ES; Appel AM; Raugei S; Shaw WJ; Bullock RM
    Chem Rev; 2022 Jul; 122(14):12427-12474. PubMed ID: 35640056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Switching Catalyst Selectivity via the Introduction of a Pendant Nitrophenyl Group.
    Johnson EM; Liu JJ; Samuel AD; Haiges R; Marinescu SC
    Inorg Chem; 2022 Jan; 61(3):1316-1326. PubMed ID: 35021006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A modular approach toward regulating the secondary coordination sphere of metal ions: differential dioxygen activation assisted by intramolecular hydrogen bonds.
    Lucas RL; Zart MK; Mukherjee J; Sorrell TN; Powell DR; Borovik AS
    J Am Chem Soc; 2006 Dec; 128(48):15476-89. PubMed ID: 17132015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proton-Assisted Reduction of CO2 by Cobalt Aminopyridine Macrocycles.
    Chapovetsky A; Do TH; Haiges R; Takase MK; Marinescu SC
    J Am Chem Soc; 2016 May; 138(18):5765-8. PubMed ID: 27092968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermochemical and mechanistic studies of electrocatalytic hydrogen production by cobalt complexes containing pendant amines.
    Wiedner ES; Appel AM; DuBois DL; Bullock RM
    Inorg Chem; 2013 Dec; 52(24):14391-403. PubMed ID: 24261463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Precisely Controlling Ancillary Ligands to Improve Catalysis of Cp*Ir Complexes for CO
    Mo XF; Ge S; Yi PP; Chen G; Liu JH; Liu C; Yi XY; He P
    Inorg Chem; 2023 Jul; 62(28):11225-11232. PubMed ID: 37401905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rhenium bipyridine catalysts with hydrogen bonding pendant amines for CO
    Hellman AN; Haiges R; Marinescu SC
    Dalton Trans; 2019 Oct; 48(38):14251-14255. PubMed ID: 31528976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Protonation State on Electrocatalytic CO
    Liu JJ; Chapovetsky A; Haiges R; Marinescu SC
    Inorg Chem; 2021 Dec; 60(23):17517-17528. PubMed ID: 34761920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.