These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 29632927)
1. Impact of different sequences of mechanical and thermal processing on the rheological properties of Porphyridium cruentum and Chlorella vulgaris as functional food ingredients. Bernaerts TMM; Panozzo A; Verhaegen KAF; Gheysen L; Foubert I; Moldenaers P; Hendrickx ME; Van Loey AM Food Funct; 2018 Apr; 9(4):2433-2446. PubMed ID: 29632927 [TBL] [Abstract][Full Text] [Related]
2. The potential of microalgae and their biopolymers as structuring ingredients in food: A review. Bernaerts TMM; Gheysen L; Foubert I; Hendrickx ME; Van Loey AM Biotechnol Adv; 2019 Dec; 37(8):107419. PubMed ID: 31340183 [TBL] [Abstract][Full Text] [Related]
3. Impact of processing on n-3 LC-PUFA in model systems enriched with microalgae. Gheysen L; Bernaerts T; Bruneel C; Goiris K; Van Durme J; Van Loey A; De Cooman L; Foubert I Food Chem; 2018 Dec; 268():441-450. PubMed ID: 30064781 [TBL] [Abstract][Full Text] [Related]
4. Optimization of bead milling parameters for the cell disruption of microalgae: process modeling and application to Porphyridium cruentum and Nannochloropsis oculata. Montalescot V; Rinaldi T; Touchard R; Jubeau S; Frappart M; Jaouen P; Bourseau P; Marchal L Bioresour Technol; 2015 Nov; 196():339-46. PubMed ID: 26253918 [TBL] [Abstract][Full Text] [Related]
5. Development of a Green Downstream Process for the Valorization of Gallego R; Martínez M; Cifuentes A; Ibáñez E; Herrero M Molecules; 2019 Apr; 24(8):. PubMed ID: 31009991 [TBL] [Abstract][Full Text] [Related]
6. Effect of microalgae addition on mineral content, colour and mechanical properties of breadsticks. Uribe-Wandurraga ZN; Igual M; García-Segovia P; Martínez-Monzó J Food Funct; 2019 Aug; 10(8):4685-4692. PubMed ID: 31294732 [TBL] [Abstract][Full Text] [Related]
7. Incorporation of Chlorella vulgaris and Spirulina maxima biomass in pasta products. Part 1: Preparation and evaluation. Fradique M; Batista AP; Nunes MC; Gouveia L; Bandarra NM; Raymundo A J Sci Food Agric; 2010 Aug; 90(10):1656-64. PubMed ID: 20564448 [TBL] [Abstract][Full Text] [Related]
8. Rheological characterization of Porphyridium sordidum and Porphyridium purpureum exopolysaccharides. Medina-Cabrera EV; Gansbiller M; Rühmann B; Schmid J; Sieber V Carbohydr Polym; 2021 Feb; 253():117237. PubMed ID: 33278993 [TBL] [Abstract][Full Text] [Related]
9. Physico-chemical characteristics of the sulfated polysaccharides of the red microalgae Dixoniella grisea and Porphyridium aerugineum. Netanel Liberman G; Ochbaum G; Mejubovsky-Mikhelis M; Bitton R; Malis Arad S Int J Biol Macromol; 2020 Feb; 145():1171-1179. PubMed ID: 31730985 [TBL] [Abstract][Full Text] [Related]
10. Effect of high pressure homogenization treatment on the rheological properties of citrus peel fiber/corn oil emulsion. Bi CH; Yan ZM; Wang PL; Alkhatib A; Zhu JY; Zou HC; Sun DY; Zhu XD; Gao F; Shi WT; Huang ZG J Sci Food Agric; 2020 Jul; 100(9):3658-3665. PubMed ID: 32246462 [TBL] [Abstract][Full Text] [Related]
11. Apparent kinetics of high temperature oxidative decomposition of microalgal biomass. Ali SA; Razzak SA; Hossain MM Bioresour Technol; 2015 Jan; 175():569-77. PubMed ID: 25459869 [TBL] [Abstract][Full Text] [Related]
12. Characterization of the flocculating agent from the spontaneously flocculating microalga Chlorella vulgaris JSC-7. Alam MA; Wan C; Guo SL; Zhao XQ; Huang ZY; Yang YL; Chang JS; Bai FW J Biosci Bioeng; 2014 Jul; 118(1):29-33. PubMed ID: 24507901 [TBL] [Abstract][Full Text] [Related]
13. Screening and identification of inhibitors of advanced glycation endproduct formation from microalgal extracts. Sun P; Cheng KW; He Y; Liu B; Mao X; Chen F Food Funct; 2018 Mar; 9(3):1683-1691. PubMed ID: 29473927 [TBL] [Abstract][Full Text] [Related]
14. Biological Activity of Hydrophilic Extract of Zielinski D; Fraczyk J; Debowski M; Zielinski M; Kaminski ZJ; Kregiel D; Jacob C; Kolesinska B Molecules; 2020 Apr; 25(8):. PubMed ID: 32295155 [TBL] [Abstract][Full Text] [Related]
15. Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Biller P; Ross AB Bioresour Technol; 2011 Jan; 102(1):215-25. PubMed ID: 20599375 [TBL] [Abstract][Full Text] [Related]
16. Effect of cell disruption methods on the extraction of bioactive metabolites from microalgal biomass. Stirk WA; Bálint P; Vambe M; Lovász C; Molnár Z; van Staden J; Ördög V J Biotechnol; 2020 Jan; 307():35-43. PubMed ID: 31678206 [TBL] [Abstract][Full Text] [Related]
17. Lipid and unsaturated fatty acid productions from three microalgae using nitrate and light-emitting diodes with complementary LED wavelength in a two-phase culture system. Kim SH; Sunwoo IY; Hong HJ; Awah CC; Jeong GT; Kim SK Bioprocess Biosyst Eng; 2019 Sep; 42(9):1517-1526. PubMed ID: 31111212 [TBL] [Abstract][Full Text] [Related]
18. Molecular and rheological characterization of different cell wall fractions of Porphyridium cruentum. Bernaerts TMM; Kyomugasho C; Van Looveren N; Gheysen L; Foubert I; Hendrickx ME; Van Loey AM Carbohydr Polym; 2018 Sep; 195():542-550. PubMed ID: 29805010 [TBL] [Abstract][Full Text] [Related]
19. Pyrolysis of microalgal biomass in carbon dioxide environment. Cho SH; Kim KH; Jeon YJ; Kwon EE Bioresour Technol; 2015 Oct; 193():185-91. PubMed ID: 26133476 [TBL] [Abstract][Full Text] [Related]
20. Shear rheological properties of acid hydrolyzed insoluble proteins from Chlorella protothecoides at the oil-water interface. Dai L; Bergfreund J; Reichert CL; Fischer P; Weiss J J Colloid Interface Sci; 2019 Sep; 551():297-304. PubMed ID: 31096137 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]