BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

555 related articles for article (PubMed ID: 29633173)

  • 1. Study of continuous blood pressure estimation based on pulse transit time, heart rate and photoplethysmography-derived hemodynamic covariates.
    Feng J; Huang Z; Zhou C; Ye X
    Australas Phys Eng Sci Med; 2018 Jun; 41(2):403-413. PubMed ID: 29633173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of heart disease and calibration interval on accuracy of pulse transit time-based blood pressure estimation.
    Ding X; Zhang Y; Tsang HK
    Physiol Meas; 2016 Feb; 37(2):227-37. PubMed ID: 26767518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous non-invasive determination of nocturnal blood pressure variation using photoplethysmographic pulse wave signals: comparison of pulse propagation time, pulse transit time and RR-interval.
    Fischer C; Penzel T
    Physiol Meas; 2019 Jan; 40(1):014001. PubMed ID: 30523856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characters available in photoplethysmogram for blood pressure estimation: beyond the pulse transit time.
    Li Y; Wang Z; Zhang L; Yang X; Song J
    Australas Phys Eng Sci Med; 2014 Jun; 37(2):367-76. PubMed ID: 24722801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of cuffless blood pressure estimation method based on multiple physiological parameters.
    Zhang Y; Zhou C; Huang Z; Ye X
    Physiol Meas; 2021 Jun; 42(5):. PubMed ID: 33857923
    [No Abstract]   [Full Text] [Related]  

  • 6. An examination of calibration intervals required for accurately tracking blood pressure using pulse transit time algorithms.
    McCarthy BM; Vaughan CJ; O'Flynn B; Mathewson A; Ó Mathúna C
    J Hum Hypertens; 2013 Dec; 27(12):744-50. PubMed ID: 23698006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New photoplethysmogram indicators for improving cuffless and continuous blood pressure estimation accuracy.
    Lin WH; Wang H; Samuel OW; Liu G; Huang Z; Li G
    Physiol Meas; 2018 Feb; 39(2):025005. PubMed ID: 29319536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel method for non-invasive blood pressure estimation based on continuous pulse transit time: An observational study.
    Shin H
    Psychophysiology; 2023 Feb; 60(2):e14173. PubMed ID: 36073769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pulse transit time measured from the ECG: an unreliable marker of beat-to-beat blood pressure.
    Payne RA; Symeonides CN; Webb DJ; Maxwell SR
    J Appl Physiol (1985); 2006 Jan; 100(1):136-41. PubMed ID: 16141378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Non-Invasive Continuous Blood Pressure Estimation Approach Based on Machine Learning.
    Chen S; Ji Z; Wu H; Xu Y
    Sensors (Basel); 2019 Jun; 19(11):. PubMed ID: 31174357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous Cuffless Blood Pressure Estimation Using Pulse Transit Time and Photoplethysmogram Intensity Ratio.
    Ding XR; Zhang YT; Liu J; Dai WX; Tsang HK
    IEEE Trans Biomed Eng; 2016 May; 63(5):964-972. PubMed ID: 26415147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blood Pressure Estimation Using Photoplethysmography Only: Comparison between Different Machine Learning Approaches.
    Khalid SG; Zhang J; Chen F; Zheng D
    J Healthc Eng; 2018; 2018():1548647. PubMed ID: 30425819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wearable Piezoelectric-Based System for Continuous Beat-to-Beat Blood Pressure Measurement.
    Wang TW; Lin SF
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32033495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bi-Modal Arterial Compliance Probe for Calibration-Free Cuffless Blood Pressure Estimation.
    P M N; Joseph J; Karthik S; Sivaprakasam M; Chenniappan M
    IEEE Trans Biomed Eng; 2018 Nov; 65(11):2392-2404. PubMed ID: 30130174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoplethysmography derivatives and pulse transit time in overnight blood pressure monitoring.
    Shahrbabaki SS; Ahmed B; Penzel T; Cvetkovic D
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2855-2858. PubMed ID: 28268912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cuffless blood-pressure estimation method using a heart-rate variability-derived parameter.
    Chen Y; Shi S; Liu YK; Huang SL; Ma T
    Physiol Meas; 2018 Sep; 39(9):095002. PubMed ID: 30089101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pulse arrival time is not an adequate surrogate for pulse transit time as a marker of blood pressure.
    Zhang G; Gao M; Xu D; Olivier NB; Mukkamala R
    J Appl Physiol (1985); 2011 Dec; 111(6):1681-6. PubMed ID: 21960657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-source PPG-based local pulse wave velocity measurement: a potential cuffless blood pressure estimation technique.
    Nabeel PM; Jayaraj J; Mohanasankar S
    Physiol Meas; 2017 Nov; 38(12):2122-2140. PubMed ID: 29058686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BiGRU-attention for Continuous blood pressure trends estimation through single channel PPG.
    Liu Z; Zhang Y; Zhou C
    Comput Biol Med; 2024 Jan; 168():107795. PubMed ID: 38056206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transmission of calibration errors (input) by generalized transfer functions to the aortic pressures (output) at different hemodynamic states.
    Papaioannou TG; Lekakis JP; Karatzis EN; Papamichael CM; Stamatelopoulos KS; Protogerou AD; Mavrikakis M; Stefanadis C
    Int J Cardiol; 2006 Jun; 110(1):46-52. PubMed ID: 16229910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.