BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

555 related articles for article (PubMed ID: 29633173)

  • 21. Pulse arrival time as a surrogate of blood pressure.
    Finnegan E; Davidson S; Harford M; Jorge J; Watkinson P; Young D; Tarassenko L; Villarroel M
    Sci Rep; 2021 Nov; 11(1):22767. PubMed ID: 34815419
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Novel Continuous Blood Pressure Estimation Approach Based on Data Mining Techniques.
    Miao F; Fu N; Zhang YT; Ding XR; Hong X; He Q; Li Y
    IEEE J Biomed Health Inform; 2017 Nov; 21(6):1730-1740. PubMed ID: 28463207
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Using a new PPG indicator to increase the accuracy of PTT-based continuous cuffless blood pressure estimation.
    Wan-Hua Lin ; Hui Wang ; Samuel OW; Guanglin Li
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():738-741. PubMed ID: 29059978
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Chair-Based Unobtrusive Cuffless Blood Pressure Monitoring System Based on Pulse Arrival Time.
    Tang Z; Tamura T; Sekine M; Huang M; Chen W; Yoshida M; Sakatani K; Kobayashi H; Kanaya S
    IEEE J Biomed Health Inform; 2017 Sep; 21(5):1194-1205. PubMed ID: 28113527
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cuffless Blood Pressure Measurement Using Smartwatches: A Large-Scale Validation Study.
    Liu ZD; Li Y; Zhang YT; Zeng J; Chen ZX; Cui ZW; Liu JK; Miao F
    IEEE J Biomed Health Inform; 2023 Sep; 27(9):4216-4227. PubMed ID: 37204948
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Non-Invasive Continuous Blood-Pressure Monitoring Models Based on Photoplethysmography and Electrocardiography.
    Wu H; Ji Z; Li M
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31847474
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Novel blood pressure and pulse pressure estimation based on pulse transit time and stroke volume approximation.
    Lee J; Sohn J; Park J; Yang S; Lee S; Kim HC
    Biomed Eng Online; 2018 Jun; 17(1):81. PubMed ID: 29914491
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Blood pressure monitoring during exercise: comparison of pulse transit time and volume clamp methods.
    Wibmer T; Denner C; Fischer C; Schildge B; Rüdiger S; Kropf-Sanchen C; Rottbauer W; Schumann C
    Blood Press; 2015; 24(6):353-60. PubMed ID: 26286887
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cuffless Blood Pressure Estimation Using Pulse Transit Time and Photoplethysmogram Intensity Ratio.
    Gholamhosseini H; Baig M; Rastegar S; Lindén M
    Stud Health Technol Inform; 2018; 249():77-83. PubMed ID: 29866960
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Novel blood pressure estimation method using single photoplethysmography feature.
    Yang Chen ; Shuo Cheng ; Tong Wang ; Ting Ma
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1712-1715. PubMed ID: 29060216
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cuffless Estimation of Blood Pressure: Importance of Variability in Blood Pressure Dependence of Arterial Stiffness Across Individuals and Measurement Sites.
    Butlin M; Shirbani F; Barin E; Tan I; Spronck B; Avolio AP
    IEEE Trans Biomed Eng; 2018 Nov; 65(11):2377-2383. PubMed ID: 29993392
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cuffless Blood Pressure Estimation Algorithms for Continuous Health-Care Monitoring.
    Kachuee M; Kiani MM; Mohammadzade H; Shabany M
    IEEE Trans Biomed Eng; 2017 Apr; 64(4):859-869. PubMed ID: 27323356
    [TBL] [Abstract][Full Text] [Related]  

  • 33. KD-Informer: A Cuff-Less Continuous Blood Pressure Waveform Estimation Approach Based on Single Photoplethysmography.
    Ma C; Zhang P; Song F; Sun Y; Fan G; Zhang T; Feng Y; Zhang G
    IEEE J Biomed Health Inform; 2023 May; 27(5):2219-2230. PubMed ID: 35700247
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Toward Ubiquitous Blood Pressure Monitoring via Pulse Transit Time: Predictions on Maximum Calibration Period and Acceptable Error Limits.
    Mukkamala R; Hahn JO
    IEEE Trans Biomed Eng; 2018 Jun; 65(6):1410-1420. PubMed ID: 28952930
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cuff-less and continuous blood pressure measurement based on pulse transit time from carotid and toe photoplethysmograms.
    Zuhair Sameen A; Jaafar R; Zahedi E; Kok Beng G
    J Med Eng Technol; 2022 Oct; 46(7):567-589. PubMed ID: 35801952
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Revised Point-to-Point Calibration Approach with Adaptive Errors Correction to Weaken Initial Sensitivity of Cuff-Less Blood Pressure Estimation.
    Shao J; Shi P; Hu S; Yu H
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32295090
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photoplethysmogram intensity ratio: A potential indicator for improving the accuracy of PTT-based cuffless blood pressure estimation.
    Ding XR; Zhang YT
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():398-401. PubMed ID: 26736283
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A chair for cuffless real-time estimation of systolic blood pressure based on pulse transit time.
    Tang Z; Sekine M; Tamura T; Yoshida M; Chen W
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5118-21. PubMed ID: 26737443
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Using individualized pulse transit time calibration to monitor blood pressure during exercise.
    Jeong Ic; Wood J; Finkelstein J
    Stud Health Technol Inform; 2013; 190():39-41. PubMed ID: 23823368
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Heart rate variability enhances the accuracy of non-invasive continuous blood pressure estimation under blood loss.
    Zhang G; Wang Z; Hou F; Wan Z; Chen F; Yu M; Wang J; Wang H
    Rev Sci Instrum; 2021 Oct; 92(10):105106. PubMed ID: 34717391
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.