These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 29633174)

  • 1. Glossokinetic potential based tongue-machine interface for 1-D extraction.
    Gorur K; Bozkurt MR; Bascil MS; Temurtas F
    Australas Phys Eng Sci Med; 2018 Jun; 41(2):379-391. PubMed ID: 29633174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tongue-rudder: a glossokinetic-potential-based tongue-machine interface.
    Nam Y; Zhao Q; Cichocki A; Choi S
    IEEE Trans Biomed Eng; 2012 Jan; 59(1):290-9. PubMed ID: 22049361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A New Approach on HCI Extracting Conscious Jaw Movements Based on EEG Signals Using Machine Learnings.
    Bascil MS
    J Med Syst; 2018 Aug; 42(9):169. PubMed ID: 30078146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GOM-Face: GKP, EOG, and EMG-based multimodal interface with application to humanoid robot control.
    Nam Y; Koo B; Cichocki A; Choi S
    IEEE Trans Biomed Eng; 2014 Feb; 61(2):453-62. PubMed ID: 24021635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectral feature extraction of EEG signals and pattern recognition during mental tasks of 2-D cursor movements for BCI using SVM and ANN.
    Bascil MS; Tesneli AY; Temurtas F
    Australas Phys Eng Sci Med; 2016 Sep; 39(3):665-76. PubMed ID: 27376723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Introduction and preliminary evaluation of the Tongue Drive System: wireless tongue-operated assistive technology for people with little or no upper-limb function.
    Huo X; Wang J; Ghovanloo M
    J Rehabil Res Dev; 2008; 45(6):921-30. PubMed ID: 19009478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An inductive tongue computer interface for control of computers and assistive devices.
    Struijk LN
    IEEE Trans Biomed Eng; 2006 Dec; 53(12 Pt 2):2594-7. PubMed ID: 17152438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and functional demonstration of a wireless intraoral inductive tongue computer interface for severely disabled persons.
    N S Andreasen Struijk L; Lontis ER; Gaihede M; Caltenco HA; Lund ME; Schioeler H; Bentsen B
    Disabil Rehabil Assist Technol; 2017 Aug; 12(6):631-640. PubMed ID: 27678024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the tip of the tongue: learning typing and pointing with an intra-oral computer interface.
    Caltenco HA; Breidegard B; Struijk LN
    Disabil Rehabil Assist Technol; 2014 Jul; 9(4):307-17. PubMed ID: 23931550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of tongue interface with keyboard for control of an assistive robotic arm.
    Struijk LNSA; Lontis R
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():925-928. PubMed ID: 28813939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fully integrated wireless inductive tongue computer interface for disabled people.
    Struijk LN; Lontis ER; Bentsen B; Christensen HV; Caltenco HA; Lund ME
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():547-50. PubMed ID: 19963971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Prototype SSVEP Based Real Time BCI Gaming System.
    Martišius I; Damaševičius R
    Comput Intell Neurosci; 2016; 2016():3861425. PubMed ID: 27051414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wireless control of powered wheelchairs with tongue motion using tongue drive assistive technology.
    Huo X; Wang J; Ghovanloo M
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4199-202. PubMed ID: 19163638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Person identification from EEG using various machine learning techniques with inter-hemispheric amplitude ratio.
    Jayarathne I; Cohen M; Amarakeerthi S
    PLoS One; 2020; 15(9):e0238872. PubMed ID: 32915850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designing a robust feature extraction method based on optimum allocation and principal component analysis for epileptic EEG signal classification.
    Siuly S; Li Y
    Comput Methods Programs Biomed; 2015 Apr; 119(1):29-42. PubMed ID: 25704869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ; Rosipal R; Matthews B
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning for real-time single-trial EEG-analysis: from brain-computer interfacing to mental state monitoring.
    Müller KR; Tangermann M; Dornhege G; Krauledat M; Curio G; Blankertz B
    J Neurosci Methods; 2008 Jan; 167(1):82-90. PubMed ID: 18031824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. P300-based brain-computer interface (BCI) event-related potentials (ERPs): People with amyotrophic lateral sclerosis (ALS) vs. age-matched controls.
    McCane LM; Heckman SM; McFarland DJ; Townsend G; Mak JN; Sellers EW; Zeitlin D; Tenteromano LM; Wolpaw JR; Vaughan TM
    Clin Neurophysiol; 2015 Nov; 126(11):2124-31. PubMed ID: 25703940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time estimation of tongue movement based on suprahyoid muscle activity.
    Sasaki M; Onishi K; Arakawa T; Nakayama A; Stefanov D; Yamaguchi M
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4605-8. PubMed ID: 24110760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of different classifiers and channel configurations of a mobile P300-based brain-computer interface.
    Ludwig SA; Kong J
    Med Biol Eng Comput; 2017 Dec; 55(12):2143-2154. PubMed ID: 28553694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.