These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 29633207)

  • 1. Hydrogel Printing Based on UV-Induced Projection for Cell-Based Microarray Fabrication.
    Yang W; Yu H; Wang Y; Liu L
    Methods Mol Biol; 2018; 1771():97-105. PubMed ID: 29633207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective pattern of cancer cell accumulation and growth using UV modulating printing of hydrogels.
    Yang W; Yu H; Wei F; Li G; Wang Y; Liu L
    Biomed Microdevices; 2015 Dec; 17(6):104. PubMed ID: 26458559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visible light induced electropolymerization of suspended hydrogel bioscaffolds in a microfluidic chip.
    Li P; Yu H; Liu N; Wang F; Lee GB; Wang Y; Liu L; Li WJ
    Biomater Sci; 2018 May; 6(6):1371-1378. PubMed ID: 29790875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Capillary Pinning Assisted Patterning of Cell-Laden Hydrogel Microarrays in Microchips.
    Gumuscu B; Eijkel JCT
    Methods Mol Biol; 2018; 1771():225-238. PubMed ID: 29633217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of PEG hydrogel microwell arrays for high-throughput single stem cell culture and analysis.
    Kobel SA; Lutolf MP
    Methods Mol Biol; 2012; 811():101-12. PubMed ID: 22042675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of Biomolecule Microarrays for Cell Immobilization Using Automated Microcontact Printing.
    Foncy J; Estève A; Degache A; Colin C; Cau JC; Malaquin L; Vieu C; Trévisiol E
    Methods Mol Biol; 2018; 1771():83-95. PubMed ID: 29633206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microcontact-Printed Hydrogel Microwell Arrays for Clonal Muscle Stem Cell Cultures.
    Aguilar VM; Cosgrove BD
    Methods Mol Biol; 2017; 1668():75-92. PubMed ID: 28842903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 96-well microplate bioreactor platform supporting individual dual perfusion and high-throughput assessment of simple or biofabricated 3D tissue models.
    Parrish J; Lim KS; Baer K; Hooper GJ; Woodfield TBF
    Lab Chip; 2018 Sep; 18(18):2757-2775. PubMed ID: 30117514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uniform-sized neurosphere-mediated motoneuron differentiation in microwell arrays.
    Lee JM; Moon JY; Shaker MR; Sun W; Chung BG
    Electrophoresis; 2017 Dec; 38(24):3161-3167. PubMed ID: 28815632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D printing of tablets using inkjet with UV photoinitiation.
    Clark EA; Alexander MR; Irvine DJ; Roberts CJ; Wallace MJ; Sharpe S; Yoo J; Hague RJM; Tuck CJ; Wildman RD
    Int J Pharm; 2017 Aug; 529(1-2):523-530. PubMed ID: 28673860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mask-free fabrication of a versatile microwell chip for multidimensional cellular analysis and drug screening.
    Yang W; Yu H; Li G; Wei F; Wang Y; Liu L
    Lab Chip; 2017 Dec; 17(24):4243-4252. PubMed ID: 29152631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assembly of RGD-Modified Hydrogel Micromodules into Permeable Three-Dimensional Hollow Microtissues Mimicking in Vivo Tissue Structures.
    Wang H; Cui J; Zheng Z; Shi Q; Sun T; Liu X; Huang Q; Fukuda T
    ACS Appl Mater Interfaces; 2017 Dec; 9(48):41669-41679. PubMed ID: 29130303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sliced Magnetic Polyacrylamide Hydrogel with Cell-Adhesive Microarray Interface: A Novel Multicellular Spheroid Culturing Platform.
    Hu K; Zhou N; Li Y; Ma S; Guo Z; Cao M; Zhang Q; Sun J; Zhang T; Gu N
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15113-9. PubMed ID: 27258682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mammalian cell-seeded hydrogel microarrays printed via dip-pin technology.
    Baird IS; Yau AY; Mann BK
    Biotechniques; 2008 Feb; 44(2):249-56. PubMed ID: 18330354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of Functional Biomaterial Microstructures by in Situ Photopolymerization and Photodegradation.
    LeValley PJ; Noren B; Kharkar PM; Kloxin AM; Gatlin JC; Oakey JS
    ACS Biomater Sci Eng; 2018 Aug; 4(8):3078-3087. PubMed ID: 31984222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional printing of freeform helical microstructures: a review.
    Farahani RD; Chizari K; Therriault D
    Nanoscale; 2014 Sep; 6(18):10470-85. PubMed ID: 25072812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of High-Aspect-Ratio 3D Hydrogel Microstructures Using Optically Induced Electrokinetics.
    Li Y; Lai SHS; Liu N; Zhang G; Liu L; Lee GB; Li WJ
    Micromachines (Basel); 2016 Apr; 7(4):. PubMed ID: 30407438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Customized construction of microscale multi-component biostructures for cellular applications.
    Ge Z; Yu H; Yang W; Liao X; Wang X; Zhou P; Yang J; Liu B; Liu L
    Biomater Adv; 2022 Feb; 133():112599. PubMed ID: 35523646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extracellular-controlled breast cancer cell formation and growth using non-UV patterned hydrogels via optically-induced electrokinetics.
    Liu N; Liang W; Liu L; Wang Y; Mai JD; Lee GB; Li WJ
    Lab Chip; 2014 Apr; 14(7):1367-76. PubMed ID: 24531214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Digital micromirror device (DMD)-based 3D printing of poly(propylene fumarate) scaffolds.
    Mott EJ; Busso M; Luo X; Dolder C; Wang MO; Fisher JP; Dean D
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():301-11. PubMed ID: 26838854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.