These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 29633212)

  • 1. Rapid Prototyping of Thermoplastic Microfluidic Devices.
    Novak R; Ng CF; Ingber DE
    Methods Mol Biol; 2018; 1771():161-170. PubMed ID: 29633212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic device fabrication by thermoplastic hot-embossing.
    Yang S; Devoe DL
    Methods Mol Biol; 2013; 949():115-23. PubMed ID: 23329439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A rapid prototyping method for polymer microfluidics with fixed aspect ratio and 3D tapered channels.
    Browne AW; Rust MJ; Jung W; Lee SH; Ahn CH
    Lab Chip; 2009 Oct; 9(20):2941-6. PubMed ID: 19789747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid prototyping of thermoplastic microfluidic devices via SLA 3D printing.
    Khoo H; Allen WS; Arroyo-Currás N; Hur SC
    Sci Rep; 2024 Jul; 14(1):17646. PubMed ID: 39085631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of four functional biocompatible pressure-sensitive adhesives for rapid prototyping of cell-based lab-on-a-chip and organ-on-a-chip systems.
    Kratz SRA; Eilenberger C; Schuller P; Bachmann B; Spitz S; Ertl P; Rothbauer M
    Sci Rep; 2019 Jun; 9(1):9287. PubMed ID: 31243326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Negligible-cost microfluidic device fabrication using 3D-printed interconnecting channel scaffolds.
    Felton H; Hughes R; Diaz-Gaxiola A
    PLoS One; 2021; 16(2):e0245206. PubMed ID: 33534849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lamination-based rapid prototyping of microfluidic devices using flexible thermoplastic substrates.
    Paul D; Pallandre A; Miserere S; Weber J; Viovy JL
    Electrophoresis; 2007 Apr; 28(7):1115-22. PubMed ID: 17330225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of thermoset polyester microfluidic devices and embossing masters using rapid prototyped polydimethylsiloxane molds.
    Fiorini GS; Jeffries GD; Lim DS; Kuyper CL; Chiu DT
    Lab Chip; 2003 Aug; 3(3):158-63. PubMed ID: 15100767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermoplastic elastomers for microfluidics: towards a high-throughput fabrication method of multilayered microfluidic devices.
    Roy E; Galas JC; Veres T
    Lab Chip; 2011 Sep; 11(18):3193-6. PubMed ID: 21796278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aerosol-jet printing facilitates the rapid prototyping of microfluidic devices with versatile geometries and precise channel functionalization.
    Ćatić N; Wells L; Al Nahas K; Smith M; Jing Q; Keyser UF; Cama J; Kar-Narayan S
    Appl Mater Today; 2020 Jun; 19():100618. PubMed ID: 33521242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-fidelity replication of thermoplastic microneedles with open microfluidic channels.
    Faraji Rad Z; Nordon RE; Anthony CJ; Bilston L; Prewett PD; Arns JY; Arns CH; Zhang L; Davies GJ
    Microsyst Nanoeng; 2017; 3():17034. PubMed ID: 31057872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymer microfabrication technologies for microfluidic systems.
    Becker H; Gärtner C
    Anal Bioanal Chem; 2008 Jan; 390(1):89-111. PubMed ID: 17989961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile Patterning of Thermoplastic Elastomers and Robust Bonding to Glass and Thermoplastics for Microfluidic Cell Culture and Organ-on-Chip.
    Schneider S; Brás EJS; Schneider O; Schlünder K; Loskill P
    Micromachines (Basel); 2021 May; 12(5):. PubMed ID: 34070209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D printed metal molds for hot embossing plastic microfluidic devices.
    Lin TY; Do T; Kwon P; Lillehoj PB
    Lab Chip; 2017 Jan; 17(2):241-247. PubMed ID: 27934978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid prototyping using 3D printing in bioanalytical research.
    Zhang C; Bills BJ; Manicke NE
    Bioanalysis; 2017 Feb; 9(4):329-331. PubMed ID: 28071134
    [No Abstract]   [Full Text] [Related]  

  • 16. Thermal scribing to prototype plastic microfluidic devices, applied to study the formation of neutrophil extracellular traps.
    Chandrasekaran A; Kalashnikov N; Rayes R; Wang C; Spicer J; Moraes C
    Lab Chip; 2017 May; 17(11):2003-2012. PubMed ID: 28524191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid prototyping polymers for microfluidic devices and high pressure injections.
    Sollier E; Murray C; Maoddi P; Di Carlo D
    Lab Chip; 2011 Nov; 11(22):3752-65. PubMed ID: 21979377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Low-Cost 3-in-1 3D Printer as a Tool for the Fabrication of Flow-Through Channels of Microfluidic Systems.
    Thaweskulchai T; Schulte A
    Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of polydimethylsiloxane microfluidics using SU-8 molds.
    Zaouk R; Park BY; Madou MJ
    Methods Mol Biol; 2006; 321():17-21. PubMed ID: 16508061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermoplastic Microfluidics.
    Kristiansen PM; Karpik A; Werder J; Guilherme M; Grob M
    Methods Mol Biol; 2022; 2373():39-55. PubMed ID: 34520005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.