BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 29633287)

  • 21. Predicting aqueous solubility by QSPR modeling.
    Meftahi N; Walker ML; Smith BJ
    J Mol Graph Model; 2021 Jul; 106():107901. PubMed ID: 33857890
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules.
    Lusci A; Pollastri G; Baldi P
    J Chem Inf Model; 2013 Jul; 53(7):1563-75. PubMed ID: 23795551
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aqueous solubility, effects of salts on aqueous solubility, and partitioning behavior of hexafluorobenzene: experimental results and COSMO-RS predictions.
    Schröder B; Freire MG; Varanda FR; Marrucho IM; Santos LM; Coutinho JA
    Chemosphere; 2011 Jul; 84(4):415-22. PubMed ID: 21507458
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Atom-specific persistent homology and its application to protein flexibility analysis.
    Bramer D; Wei GW
    Comput Math Biophys; 2020 Jan; 8(1):1-35. PubMed ID: 34278230
    [TBL] [Abstract][Full Text] [Related]  

  • 25. QSAR study on solubility of alkanes in water and their partition coefficients in different solvent systems using PI index.
    Khadikar PV; Mandloi D; Bajaj AV; Joshi S
    Bioorg Med Chem Lett; 2003 Feb; 13(3):419-22. PubMed ID: 12565942
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Are 2D fingerprints still valuable for drug discovery?
    Gao K; Nguyen DD; Sresht V; Mathiowetz AM; Tu M; Wei GW
    Phys Chem Chem Phys; 2020 Apr; 22(16):8373-8390. PubMed ID: 32266895
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Accurate solubility prediction with error bars for electrolytes: a machine learning approach.
    Schwaighofer A; Schroeter T; Mika S; Laub J; ter Laak A; Sülzle D; Ganzer U; Heinrich N; Müller KR
    J Chem Inf Model; 2007; 47(2):407-24. PubMed ID: 17243756
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of aqueous solubility of drug-like molecules using a novel algorithm for automatic adjustment of relative importance of descriptors implemented in counter-propagation artificial neural networks.
    Erić S; Kalinić M; Popović A; Zloh M; Kuzmanovski I
    Int J Pharm; 2012 Nov; 437(1-2):232-41. PubMed ID: 22940210
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Using Deep Learning for Compound Selectivity Prediction.
    Zhang R; Li J; Lu J; Hu R; Yuan Y; Zhao Z
    Curr Comput Aided Drug Des; 2016; 12(1):5-14. PubMed ID: 26892071
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prediction of the aqueous solubility of benzylamine salts using QSPR model.
    Tantishaiyakul V
    J Pharm Biomed Anal; 2005 Feb; 37(2):411-5. PubMed ID: 15708687
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Algebraic graph-assisted bidirectional transformers for molecular property prediction.
    Chen D; Gao K; Nguyen DD; Chen X; Jiang Y; Wei GW; Pan F
    Nat Commun; 2021 Jun; 12(1):3521. PubMed ID: 34112777
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of pH-dependent aqueous solubility of druglike molecules.
    Hansen NT; Kouskoumvekaki I; Jørgensen FS; Brunak S; Jónsdóttir SO
    J Chem Inf Model; 2006; 46(6):2601-9. PubMed ID: 17125200
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A deep learning approach for the blind logP prediction in SAMPL6 challenge.
    Prasad S; Brooks BR
    J Comput Aided Mol Des; 2020 May; 34(5):535-542. PubMed ID: 32002779
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prediction of Human Cytochrome P450 Inhibition Using a Multitask Deep Autoencoder Neural Network.
    Li X; Xu Y; Lai L; Pei J
    Mol Pharm; 2018 Oct; 15(10):4336-4345. PubMed ID: 29775322
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aqueous solubility prediction of drugs based on molecular topology and neural network modeling.
    Huuskonen J; Salo M; Taskinen J
    J Chem Inf Comput Sci; 1998; 38(3):450-6. PubMed ID: 9611785
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Estimating the physicochemical properties of polyhalogenated aromatic and aliphatic compounds using UPPER: part 2. Aqueous solubility, octanol solubility and octanol-water partition coefficient.
    Admire B; Lian B; Yalkowsky SH
    Chemosphere; 2015 Jan; 119():1441-1446. PubMed ID: 25454206
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Externally predictive single-descriptor based QSPRs for physico-chemical properties of polychlorinated-naphthalenes: Exploring relationships of logS(W), logK(OA), and logK(OW) with electron-correlation.
    Chayawan ; Vikas
    J Hazard Mater; 2015 Oct; 296():68-81. PubMed ID: 25913673
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multitask deep learning with dynamic task balancing for quantum mechanical properties prediction.
    Yang Z; Zhong W; Lv Q; Chen CY
    Phys Chem Chem Phys; 2022 Mar; 24(9):5383-5393. PubMed ID: 35169821
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Predicting human protein function with multi-task deep neural networks.
    Fa R; Cozzetto D; Wan C; Jones DT
    PLoS One; 2018; 13(6):e0198216. PubMed ID: 29889900
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Predicting Melting Points of Organic Molecules: Applications to Aqueous Solubility Prediction Using the General Solubility Equation.
    McDonagh JL; van Mourik T; Mitchell JB
    Mol Inform; 2015 Nov; 34(11-12):715-24. PubMed ID: 27491032
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.