These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
320 related articles for article (PubMed ID: 29633424)
1. Tbx2 is required for the suppression of mesendoderm during early Xenopus development. Teegala S; Chauhan R; Lei E; Weinstein DC Dev Dyn; 2018 Jul; 247(7):903-913. PubMed ID: 29633424 [TBL] [Abstract][Full Text] [Related]
2. Tbx2 mediates dorsal patterning and germ layer suppression through inhibition of BMP/GDF and Activin/Nodal signaling. Reich S; Kayastha P; Teegala S; Weinstein DC BMC Mol Cell Biol; 2020 May; 21(1):39. PubMed ID: 32466750 [TBL] [Abstract][Full Text] [Related]
3. Xema, a foxi-class gene expressed in the gastrula stage Xenopus ectoderm, is required for the suppression of mesendoderm. Suri C; Haremaki T; Weinstein DC Development; 2005 Jun; 132(12):2733-42. PubMed ID: 15901660 [TBL] [Abstract][Full Text] [Related]
4. A novel role for Ascl1 in the regulation of mesendoderm formation via HDAC-dependent antagonism of VegT. Gao L; Zhu X; Chen G; Ma X; Zhang Y; Khand AA; Shi H; Gu F; Lin H; Chen Y; Zhang H; He L; Tao Q Development; 2016 Feb; 143(3):492-503. PubMed ID: 26700681 [TBL] [Abstract][Full Text] [Related]
5. Repression of Inappropriate Gene Expression in the Vertebrate Embryonic Ectoderm. Reich S; Weinstein DC Genes (Basel); 2019 Nov; 10(11):. PubMed ID: 31698780 [TBL] [Abstract][Full Text] [Related]
6. Coco regulates dorsoventral specification of germ layers via inhibition of TGFβ signalling. Bates TJ; Vonica A; Heasman J; Brivanlou AH; Bell E Development; 2013 Oct; 140(20):4177-81. PubMed ID: 24026124 [TBL] [Abstract][Full Text] [Related]
7. The Xenopus LIM-homeodomain protein Xlim5 regulates the differential adhesion properties of early ectoderm cells. Houston DW; Wylie C Development; 2003 Jun; 130(12):2695-704. PubMed ID: 12736213 [TBL] [Abstract][Full Text] [Related]
8. Global identification of Smad2 and Eomesodermin targets in zebrafish identifies a conserved transcriptional network in mesendoderm and a novel role for Eomesodermin in repression of ectodermal gene expression. Nelson AC; Cutty SJ; Niini M; Stemple DL; Flicek P; Houart C; Bruce AE; Wardle FC BMC Biol; 2014 Oct; 12():81. PubMed ID: 25277163 [TBL] [Abstract][Full Text] [Related]
9. The role of maternal VegT in establishing the primary germ layers in Xenopus embryos. Zhang J; Houston DW; King ML; Payne C; Wylie C; Heasman J Cell; 1998 Aug; 94(4):515-24. PubMed ID: 9727494 [TBL] [Abstract][Full Text] [Related]
10. Characterization of a novel ectodermal signaling center regulating Tbx2 and Shh in the vertebrate limb. Nissim S; Allard P; Bandyopadhyay A; Harfe BD; Tabin CJ Dev Biol; 2007 Apr; 304(1):9-21. PubMed ID: 17300775 [TBL] [Abstract][Full Text] [Related]
11. Two-step induction of primitive erythrocytes in Xenopus laevis embryos: signals from the vegetal endoderm and the overlying ectoderm. Kikkawa M; Yamazaki M; Izutsu Y; Maéno M Int J Dev Biol; 2001 Apr; 45(2):387-96. PubMed ID: 11330858 [TBL] [Abstract][Full Text] [Related]
12. Neuregulin induces the expression of mesodermal genes in the ectoderm of Xenopus laevis. Chung HG; Chung HM Mol Cells; 1999 Oct; 9(5):497-503. PubMed ID: 10597038 [TBL] [Abstract][Full Text] [Related]
13. Cell migration in the Xenopus gastrula. Huang Y; Winklbauer R Wiley Interdiscip Rev Dev Biol; 2018 Nov; 7(6):e325. PubMed ID: 29944210 [TBL] [Abstract][Full Text] [Related]
14. The RNA-binding protein XSeb4R: a positive regulator of VegT mRNA stability and translation that is required for germ layer formation in Xenopus. Souopgui J; Rust B; Vanhomwegen J; Heasman J; Henningfeld KA; Bellefroid E; Pieler T Genes Dev; 2008 Sep; 22(17):2347-52. PubMed ID: 18765788 [TBL] [Abstract][Full Text] [Related]
15. The role of Mixer in patterning the early Xenopus embryo. Kofron M; Wylie C; Heasman J Development; 2004 May; 131(10):2431-41. PubMed ID: 15128672 [TBL] [Abstract][Full Text] [Related]
16. Generation of the germ layers along the animal-vegetal axis in Xenopus laevis. Yasuo H; Lemaire P Int J Dev Biol; 2001; 45(1):229-35. PubMed ID: 11291851 [TBL] [Abstract][Full Text] [Related]
17. Subdividing the embryo: a role for Notch signaling during germ layer patterning in Xenopus laevis. Contakos SP; Gaydos CM; Pfeil EC; McLaughlin KA Dev Biol; 2005 Dec; 288(1):294-307. PubMed ID: 16289076 [TBL] [Abstract][Full Text] [Related]
18. Changes in states of commitment of single animal pole blastomeres of Xenopus laevis. Snape A; Wylie CC; Smith JC; Heasman J Dev Biol; 1987 Feb; 119(2):503-10. PubMed ID: 3803715 [TBL] [Abstract][Full Text] [Related]
19. Brachyury, Tbx2/3 and sall expression during embryogenesis of the indirectly developing polychaete Hydroides elegans. Arenas-Mena C Int J Dev Biol; 2013; 57(1):73-83. PubMed ID: 23585355 [TBL] [Abstract][Full Text] [Related]
20. Refinement of gene expression patterns in the early Xenopus embryo. Wardle FC; Smith JC Development; 2004 Oct; 131(19):4687-96. PubMed ID: 15329341 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]