These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
499 related articles for article (PubMed ID: 29633464)
1. SUMOylation is required for fungal development and pathogenicity in the rice blast fungus Magnaporthe oryzae. Lim YJ; Kim KT; Lee YH Mol Plant Pathol; 2018 Sep; 19(9):2134-2148. PubMed ID: 29633464 [TBL] [Abstract][Full Text] [Related]
2. Global analysis of sumoylation function reveals novel insights into development and appressorium-mediated infection of the rice blast fungus. Liu C; Li Z; Xing J; Yang J; Wang Z; Zhang H; Chen D; Peng YL; Chen XL New Phytol; 2018 Aug; 219(3):1031-1047. PubMed ID: 29663402 [TBL] [Abstract][Full Text] [Related]
3. F-box only and CUE proteins are crucial ubiquitination-associated components for conidiation and pathogenicity in the rice blast fungus, Magnaporthe oryzae. Lim YJ; Lee YH Fungal Genet Biol; 2020 Nov; 144():103473. PubMed ID: 32991996 [TBL] [Abstract][Full Text] [Related]
4. Characterization of 47 Cys2 -His2 zinc finger proteins required for the development and pathogenicity of the rice blast fungus Magnaporthe oryzae. Cao H; Huang P; Zhang L; Shi Y; Sun D; Yan Y; Liu X; Dong B; Chen G; Snyder JH; Lin F; Lu J New Phytol; 2016 Aug; 211(3):1035-51. PubMed ID: 27041000 [TBL] [Abstract][Full Text] [Related]
5. Deng S; Sun W; Dong L; Cui G; Deng YZ mSphere; 2019 Sep; 4(5):. PubMed ID: 31484736 [No Abstract] [Full Text] [Related]
6. SUMO enters the ring: the emerging role of SUMOylation in Magnaporthe oryzae pathogenicity. Littlejohn GR New Phytol; 2018 Aug; 219(3):848-849. PubMed ID: 29998531 [No Abstract] [Full Text] [Related]
7. Two conidiation-related Zn(II)2Cys6 transcription factor genes in the rice blast fungus. Chung H; Choi J; Park SY; Jeon J; Lee YH Fungal Genet Biol; 2013 Dec; 61():133-41. PubMed ID: 24140150 [TBL] [Abstract][Full Text] [Related]
8. Polyubiquitin is required for growth, development and pathogenicity in the rice blast fungus Magnaporthe oryzae. Oh Y; Franck WL; Han SO; Shows A; Gokce E; Muddiman DC; Dean RA PLoS One; 2012; 7(8):e42868. PubMed ID: 22900059 [TBL] [Abstract][Full Text] [Related]
9. System-Wide Characterization of MoArf GTPase Family Proteins and Adaptor Protein MoGga1 Involved in the Development and Pathogenicity of Magnaporthe oryzae. Zhang S; Yang L; Li L; Zhong K; Wang W; Liu M; Li Y; Liu X; Yu R; He J; Zhang H; Zheng X; Wang P; Zhang Z mBio; 2019 Oct; 10(5):. PubMed ID: 31615964 [TBL] [Abstract][Full Text] [Related]
10. Mitochondrial fission protein MoFis1 mediates conidiation and is required for full virulence of the rice blast fungus Magnaporthe oryzae. Khan IA; Ning G; Liu X; Feng X; Lin F; Lu J Microbiol Res; 2015 Sep; 178():51-8. PubMed ID: 26302847 [TBL] [Abstract][Full Text] [Related]
11. The regulatory factor X protein MoRfx1 is required for development and pathogenicity in the rice blast fungus Magnaporthe oryzae. Sun D; Cao H; Shi Y; Huang P; Dong B; Liu X; Lin F; Lu J Mol Plant Pathol; 2017 Oct; 18(8):1075-1088. PubMed ID: 27434465 [TBL] [Abstract][Full Text] [Related]
12. Comparative functional analysis of the velvet gene family reveals unique roles in fungal development and pathogenicity in Magnaporthe oryzae. Kim HJ; Han JH; Kim KS; Lee YH Fungal Genet Biol; 2014 May; 66():33-43. PubMed ID: 24632440 [TBL] [Abstract][Full Text] [Related]
13. MoRad6-mediated ubiquitination pathways are essential for development and pathogenicity in Magnaporthe oryzae. Shi HB; Chen GQ; Chen YP; Dong B; Lu JP; Liu XH; Lin FC Environ Microbiol; 2016 Nov; 18(11):4170-4187. PubMed ID: 27581713 [TBL] [Abstract][Full Text] [Related]
14. A Subunit of the COP9 Signalosome, MoCsn6, Is Involved in Fungal Development, Pathogenicity, and Autophagy in Rice Blast Fungus. Shen ZF; Li L; Wang JY; Zhang YR; Wang ZH; Liang S; Zhu XM; Lu JP; Lin FC; Liu XH Microbiol Spectr; 2022 Dec; 10(6):e0202022. PubMed ID: 36445131 [TBL] [Abstract][Full Text] [Related]
15. WISH, a novel CFEM GPCR is indispensable for surface sensing, asexual and pathogenic differentiation in rice blast fungus. Sabnam N; Roy Barman S Fungal Genet Biol; 2017 Aug; 105():37-51. PubMed ID: 28576657 [TBL] [Abstract][Full Text] [Related]
16. Rice blast fungus (Magnaporthe oryzae) infects Arabidopsis via a mechanism distinct from that required for the infection of rice. Park JY; Jin J; Lee YW; Kang S; Lee YH Plant Physiol; 2009 Jan; 149(1):474-86. PubMed ID: 18987215 [TBL] [Abstract][Full Text] [Related]
17. Histone acetyltransferase MoHat1 acetylates autophagy-related proteins MoAtg3 and MoAtg9 to orchestrate functional appressorium formation and pathogenicity in Yin Z; Chen C; Yang J; Feng W; Liu X; Zuo R; Wang J; Yang L; Zhong K; Gao C; Zhang H; Zheng X; Wang P; Zhang Z Autophagy; 2019 Jul; 15(7):1234-1257. PubMed ID: 30776962 [TBL] [Abstract][Full Text] [Related]
18. A class-II myosin is required for growth, conidiation, cell wall integrity and pathogenicity of Magnaporthe oryzae. Guo M; Tan L; Nie X; Zhang Z Virulence; 2017 Oct; 8(7):1335-1354. PubMed ID: 28448785 [TBL] [Abstract][Full Text] [Related]
19. Pleiotropic roles of O-mannosyltransferase MoPmt4 in development and pathogenicity of Magnaporthe oryzae. Pan Y; Pan R; Tan L; Zhang Z; Guo M Curr Genet; 2019 Feb; 65(1):223-239. PubMed ID: 29946987 [TBL] [Abstract][Full Text] [Related]
20. Genome-Wide Analysis of Hypoxia-Responsive Genes in the Rice Blast Fungus, Magnaporthe oryzae. Choi J; Chung H; Lee GW; Koh SK; Chae SK; Lee YH PLoS One; 2015; 10(8):e0134939. PubMed ID: 26241858 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]