BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 29633777)

  • 1. Shell-corona microgels from double interpenetrating networks.
    Rudyak VY; Gavrilov AA; Kozhunova EY; Chertovich AV
    Soft Matter; 2018 Apr; 14(15):2777-2781. PubMed ID: 29633777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymer dynamics in responsive microgels: influence of cononsolvency and microgel architecture.
    Scherzinger C; Holderer O; Richter D; Richtering W
    Phys Chem Chem Phys; 2012 Feb; 14(8):2762-8. PubMed ID: 22252036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly-
    Rey M; Fernandez-Rodriguez MA; Karg M; Isa L; Vogel N
    Acc Chem Res; 2020 Feb; 53(2):414-424. PubMed ID: 31940173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cargo shuttling by electrochemical switching of core-shell microgels obtained by a facile one-shot polymerization.
    Mergel O; Schneider S; Tiwari R; Kühn PT; Keskin D; Stuart MCA; Schöttner S; de Kanter M; Noyong M; Caumanns T; Mayer J; Janzen C; Simon U; Gallei M; Wöll D; van Rijn P; Plamper FA
    Chem Sci; 2019 Feb; 10(6):1844-1856. PubMed ID: 30842853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of interpenetrating networks microgel synthesis.
    Rudyak VY; Kozhunova EY; Chertovich AV
    Soft Matter; 2020 May; 16(20):4858-4865. PubMed ID: 32421134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimuli-responsive poly(N-vinylcaprolactam-co-2-methoxyethyl acrylate) core-shell microgels: facile synthesis, modulation of surface properties and controlled internalisation into cells.
    Melle A; Balaceanu A; Kather M; Wu Y; Gau E; Sun W; Huang X; Shi X; Karperien M; Pich A
    J Mater Chem B; 2016 Aug; 4(30):5127-5137. PubMed ID: 32263510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An anionic shell shields a cationic core allowing for uptake and release of polyelectrolytes within core-shell responsive microgels.
    Gelissen APH; Scotti A; Turnhoff SK; Janssen C; Radulescu A; Pich A; Rudov AA; Potemkin II; Richtering W
    Soft Matter; 2018 May; 14(21):4287-4299. PubMed ID: 29774926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anisotropic Microgels Show Their Soft Side.
    Nickel AC; Kratzenberg T; Bochenek S; Schmidt MM; Rudov AA; Falkenstein A; Potemkin II; Crassous JJ; Richtering W
    Langmuir; 2022 May; 38(17):5063-5080. PubMed ID: 34586813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drug-Induced Phase Separation in Polyelectrolyte Microgels.
    Al-Tikriti Y; Hansson P
    Gels; 2021 Dec; 8(1):. PubMed ID: 35049539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer simulation of the core-shell microgels synthesis via precipitation polymerization.
    Gavrilov AA; Rudyak VY; Chertovich AV
    J Colloid Interface Sci; 2020 Aug; 574():393-398. PubMed ID: 32339822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of architecture on the interaction of negatively charged multisensitive poly(N-isopropylacrylamide)-co-methacrylic acid microgels with oppositely charged polyelectrolyte: absorption vs adsorption.
    Kleinen J; Klee A; Richtering W
    Langmuir; 2010 Jul; 26(13):11258-65. PubMed ID: 20377221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drug-Eluting Polyacrylate Microgels: Loading and Release of Amitriptyline.
    Al-Tikriti Y; Hansson P
    J Phys Chem B; 2020 Mar; 124(11):2289-2304. PubMed ID: 32105083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of swollen hollow polyelectrolyte nanogels with inhomogeneous cross-link distribution.
    Rudov AA; Portnov IV; Bogdanova AR; Potemkin II
    J Colloid Interface Sci; 2023 Jun; 640():1015-1028. PubMed ID: 36921382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hollow and Core-Shell Microgels at Oil-Water Interfaces: Spreading of Soft Particles Reduces the Compressibility of the Monolayer.
    Geisel K; Rudov AA; Potemkin II; Richtering W
    Langmuir; 2015 Dec; 31(48):13145-54. PubMed ID: 26575794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anisotropic Hollow Microgels That Can Adapt Their Size, Shape, and Softness.
    Nickel AC; Scotti A; Houston JE; Ito T; Crassous J; Pedersen JS; Richtering W
    Nano Lett; 2019 Nov; 19(11):8161-8170. PubMed ID: 31613114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microphase separation of stimuli-responsive interpenetrating network microgels investigated by scattering methods.
    Kozhunova EY; Rudyak VY; Li X; Shibayama M; Peters GS; Vyshivannaya OV; Nasimova IR; Chertovich AV
    J Colloid Interface Sci; 2021 Sep; 597():297-305. PubMed ID: 33872886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amphiphilic Arborescent Copolymers and Microgels: From Unimolecular Micelles in a Selective Solvent to the Stable Monolayers of Variable Density and Nanostructure at a Liquid Interface.
    Gumerov RA; Rudov AA; Richtering W; Möller M; Potemkin II
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):31302-31316. PubMed ID: 28394566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The structure and volume phase transition behavior of poly(N-vinylcaprolactam)-based hybrid microgels containing carbon nanodots.
    Sun W; Wu P
    Phys Chem Chem Phys; 2016 Dec; 19(1):127-134. PubMed ID: 27901139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amphoteric core-shell microgels: contraphilic two-compartment colloidal particles.
    Christodoulakis KE; Vamvakaki M
    Langmuir; 2010 Jan; 26(2):639-47. PubMed ID: 19754064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Are thermoresponsive microgels model systems for concentrated colloidal suspensions? A rheology and small-angle neutron scattering study.
    Stieger M; Pedersen JS; Lindner P; Richtering W
    Langmuir; 2004 Aug; 20(17):7283-92. PubMed ID: 15301516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.