These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 29633960)

  • 1. Superpixel-based and boundary-sensitive convolutional neural network for automated liver segmentation.
    Qin W; Wu J; Han F; Yuan Y; Zhao W; Ibragimov B; Gu J; Xing L
    Phys Med Biol; 2018 May; 63(9):095017. PubMed ID: 29633960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Abdomen CT multi-organ segmentation using token-based MLP-Mixer.
    Pan S; Chang CW; Wang T; Wynne J; Hu M; Lei Y; Liu T; Patel P; Roper J; Yang X
    Med Phys; 2023 May; 50(5):3027-3038. PubMed ID: 36463516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic liver segmentation by integrating fully convolutional networks into active contour models.
    Guo X; Schwartz LH; Zhao B
    Med Phys; 2019 Oct; 46(10):4455-4469. PubMed ID: 31356688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets.
    Hu P; Wu F; Peng J; Bao Y; Chen F; Kong D
    Int J Comput Assist Radiol Surg; 2017 Mar; 12(3):399-411. PubMed ID: 27885540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic Liver Segmentation in CT Images with Enhanced GAN and Mask Region-Based CNN Architectures.
    Wei X; Chen X; Lai C; Zhu Y; Yang H; Du Y
    Biomed Res Int; 2021; 2021():9956983. PubMed ID: 34957310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial aggregation of holistically-nested convolutional neural networks for automated pancreas localization and segmentation.
    Roth HR; Lu L; Lay N; Harrison AP; Farag A; Sohn A; Summers RM
    Med Image Anal; 2018 Apr; 45():94-107. PubMed ID: 29427897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic Organ Segmentation for CT Scans Based on Super-Pixel and Convolutional Neural Networks.
    Liu X; Guo S; Yang B; Ma S; Zhang H; Li J; Sun C; Jin L; Li X; Yang Q; Fu Y
    J Digit Imaging; 2018 Oct; 31(5):748-760. PubMed ID: 29679242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shape-intensity prior level set combining probabilistic atlas and probability map constrains for automatic liver segmentation from abdominal CT images.
    Wang J; Cheng Y; Guo C; Wang Y; Tamura S
    Int J Comput Assist Radiol Surg; 2016 May; 11(5):817-26. PubMed ID: 26646416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks.
    Ibragimov B; Xing L
    Med Phys; 2017 Feb; 44(2):547-557. PubMed ID: 28205307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine-assisted interpolation algorithm for semi-automated segmentation of highly deformable organs.
    Luximon DC; Abdulkadir Y; Chow PE; Morris ED; Lamb JM
    Med Phys; 2022 Jan; 49(1):41-51. PubMed ID: 34783027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Liver tumor segmentation based on 3D convolutional neural network with dual scale.
    Meng L; Tian Y; Bu S
    J Appl Clin Med Phys; 2020 Jan; 21(1):144-157. PubMed ID: 31793212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lung tumor segmentation in 4D CT images using motion convolutional neural networks.
    Momin S; Lei Y; Tian Z; Wang T; Roper J; Kesarwala AH; Higgins K; Bradley JD; Liu T; Yang X
    Med Phys; 2021 Nov; 48(11):7141-7153. PubMed ID: 34469001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beyond pixel: Superpixel-based MRI segmentation through traditional machine learning and graph convolutional network.
    Khatun Z; Jónsson H; Tsirilaki M; Maffulli N; Oliva F; Daval P; Tortorella F; Gargiulo P
    Comput Methods Programs Biomed; 2024 Nov; 256():108398. PubMed ID: 39236562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Male pelvic multi-organ segmentation using token-based transformer Vnet.
    Pan S; Lei Y; Wang T; Wynne J; Chang CW; Roper J; Jani AB; Patel P; Bradley JD; Liu T; Yang X
    Phys Med Biol; 2022 Oct; 67(20):. PubMed ID: 36170872
    [No Abstract]   [Full Text] [Related]  

  • 15. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks.
    Tong N; Gou S; Yang S; Ruan D; Sheng K
    Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Segmentation of pancreatic ductal adenocarcinoma (PDAC) and surrounding vessels in CT images using deep convolutional neural networks and texture descriptors.
    Mahmoudi T; Kouzahkanan ZM; Radmard AR; Kafieh R; Salehnia A; Davarpanah AH; Arabalibeik H; Ahmadian A
    Sci Rep; 2022 Feb; 12(1):3092. PubMed ID: 35197542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the automatic segmentation of multiple organs at risk in CT images of lung cancer between deep convolutional neural network-based and atlas-based techniques.
    Zhu J; Zhang J; Qiu B; Liu Y; Liu X; Chen L
    Acta Oncol; 2019 Feb; 58(2):257-264. PubMed ID: 30398090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fully automated multiorgan segmentation of female pelvic magnetic resonance images with coarse-to-fine convolutional neural network.
    Zabihollahy F; Viswanathan AN; Schmidt EJ; Morcos M; Lee J
    Med Phys; 2021 Nov; 48(11):7028-7042. PubMed ID: 34609756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-paced DenseNet with boundary constraint for automated multi-organ segmentation on abdominal CT images.
    Tong N; Gou S; Niu T; Yang S; Sheng K
    Phys Med Biol; 2020 Jul; 65(13):135011. PubMed ID: 32657281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic 3D CT liver segmentation based on fast global minimization of probabilistic active contour.
    Jin R; Wang M; Xu L; Lu J; Song E; Ma G
    Med Phys; 2023 Apr; 50(4):2100-2120. PubMed ID: 36413182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.