These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 29633974)
1. Structural view of the 2A protease from human rhinovirus C15. Ling H; Yang P; Hou H; Sun Y Acta Crystallogr F Struct Biol Commun; 2018 Apr; 74(Pt 4):255-261. PubMed ID: 29633974 [TBL] [Abstract][Full Text] [Related]
2. Defining residues involved in human rhinovirus 2A proteinase substrate recognition. Sousa C; Schmid EM; Skern T FEBS Lett; 2006 Oct; 580(24):5713-7. PubMed ID: 17007846 [TBL] [Abstract][Full Text] [Related]
3. Defining substrate selection by rhinoviral 2A proteinase through its crystal structure with the inhibitor zVAM.fmk. Deutschmann-Olek KM; Yue WW; Bezerra GA; Skern T Virology; 2021 Oct; 562():128-141. PubMed ID: 34315103 [TBL] [Abstract][Full Text] [Related]
4. The structure of the 2A proteinase from a common cold virus: a proteinase responsible for the shut-off of host-cell protein synthesis. Petersen JF; Cherney MM; Liebig HD; Skern T; Kuechler E; James MN EMBO J; 1999 Oct; 18(20):5463-75. PubMed ID: 10523291 [TBL] [Abstract][Full Text] [Related]
5. Mutational analyses support a model for the HRV2 2A proteinase. Sommergruber W; Seipelt J; Fessl F; Skern T; Liebig HD; Casari G Virology; 1997 Aug; 234(2):203-14. PubMed ID: 9268151 [TBL] [Abstract][Full Text] [Related]
6. Ex vivo and in vivo inhibition of human rhinovirus replication by a new pseudosubstrate of viral 2A protease. Falah N; Violot S; Décimo D; Berri F; Foucault-Grunenwald ML; Ohlmann T; Schuffenecker I; Morfin F; Lina B; Riteau B; Cortay JC J Virol; 2012 Jan; 86(2):691-704. PubMed ID: 22072773 [TBL] [Abstract][Full Text] [Related]
7. Solution structure of the 2A protease from a common cold agent, human rhinovirus C2, strain W12. Lee W; Watters KE; Troupis AT; Reinen NM; Suchy FP; Moyer KL; Frederick RO; Tonelli M; Aceti DJ; Palmenberg AC; Markley JL PLoS One; 2014; 9(6):e97198. PubMed ID: 24937088 [TBL] [Abstract][Full Text] [Related]
8. Structure and dynamics of coxsackievirus B4 2A proteinase, an enyzme involved in the etiology of heart disease. Baxter NJ; Roetzer A; Liebig HD; Sedelnikova SE; Hounslow AM; Skern T; Waltho JP J Virol; 2006 Feb; 80(3):1451-62. PubMed ID: 16415022 [TBL] [Abstract][Full Text] [Related]
9. Insights into cleavage specificity from the crystal structure of foot-and-mouth disease virus 3C protease complexed with a peptide substrate. Zunszain PA; Knox SR; Sweeney TR; Yang J; Roqué-Rosell N; Belsham GJ; Leatherbarrow RJ; Curry S J Mol Biol; 2010 Jan; 395(2):375-89. PubMed ID: 19883658 [TBL] [Abstract][Full Text] [Related]
10. Crystal structures of the 3C proteases from Coxsackievirus B3 and B4. Jiang H; Lin C; Chang J; Zou X; Zhang J; Li J Acta Crystallogr F Struct Biol Commun; 2024 Aug; 80(Pt 8):183-190. PubMed ID: 39052022 [TBL] [Abstract][Full Text] [Related]
11. Specificity of human rhinovirus 2A(pro) is determined by combined spatial properties of four cleavage site residues. Neubauer D; Aumayr M; Gösler I; Skern T J Gen Virol; 2013 Jul; 94(Pt 7):1535-1546. PubMed ID: 23580429 [TBL] [Abstract][Full Text] [Related]
12. An open conformation determined by a structural switch for 2A protease from coxsackievirus A16. Sun Y; Wang X; Yuan S; Dang M; Li X; Zhang XC; Rao Z Protein Cell; 2013 Oct; 4(10):782-92. PubMed ID: 24026848 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of proteolytic activity of poliovirus and rhinovirus 2A proteinases by elastase-specific inhibitors. Molla A; Hellen CU; Wimmer E J Virol; 1993 Aug; 67(8):4688-95. PubMed ID: 8392608 [TBL] [Abstract][Full Text] [Related]
15. Differential processing of nuclear pore complex proteins by rhinovirus 2A proteases from different species and serotypes. Watters K; Palmenberg AC J Virol; 2011 Oct; 85(20):10874-83. PubMed ID: 21835805 [TBL] [Abstract][Full Text] [Related]
16. Quantitative Analysis of the Substrate Specificity of Human Rhinovirus 3C Protease and Exploration of Its Substrate Recognition Mechanisms. Fan X; Li X; Zhou Y; Mei M; Liu P; Zhao J; Peng W; Jiang ZB; Yang S; Iverson BL; Zhang G; Yi L ACS Chem Biol; 2020 Jan; 15(1):63-73. PubMed ID: 31613083 [TBL] [Abstract][Full Text] [Related]
17. Enterovirus 71 and coxsackievirus A16 3C proteases: binding to rupintrivir and their substrates and anti-hand, foot, and mouth disease virus drug design. Lu G; Qi J; Chen Z; Xu X; Gao F; Lin D; Qian W; Liu H; Jiang H; Yan J; Gao GF J Virol; 2011 Oct; 85(19):10319-31. PubMed ID: 21795339 [TBL] [Abstract][Full Text] [Related]
18. Conservation of amino acids in human rhinovirus 3C protease correlates with broad-spectrum antiviral activity of rupintrivir, a novel human rhinovirus 3C protease inhibitor. Binford SL; Maldonado F; Brothers MA; Weady PT; Zalman LS; Meador JW; Matthews DA; Patick AK Antimicrob Agents Chemother; 2005 Feb; 49(2):619-26. PubMed ID: 15673742 [TBL] [Abstract][Full Text] [Related]
19. NMR solution structures of the apo and peptide-inhibited human rhinovirus 3C protease (Serotype 14): structural and dynamic comparison. Bjorndahl TC; Andrew LC; Semenchenko V; Wishart DS Biochemistry; 2007 Nov; 46(45):12945-58. PubMed ID: 17944485 [TBL] [Abstract][Full Text] [Related]
20. Structure of human rhinovirus 3C protease reveals a trypsin-like polypeptide fold, RNA-binding site, and means for cleaving precursor polyprotein. Matthews DA; Smith WW; Ferre RA; Condon B; Budahazi G; Sisson W; Villafranca JE; Janson CA; McElroy HE; Gribskov CL Cell; 1994 Jun; 77(5):761-71. PubMed ID: 7515772 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]