These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 29634257)
1. Electron-Donating Phenolic and Electron-Accepting Quinone Moieties in Peat Dissolved Organic Matter: Quantities and Redox Transformations in the Context of Peat Biogeochemistry. Walpen N; Getzinger GJ; Schroth MH; Sander M Environ Sci Technol; 2018 May; 52(9):5236-5245. PubMed ID: 29634257 [TBL] [Abstract][Full Text] [Related]
2. Quantification of Phenolic Antioxidant Moieties in Dissolved Organic Matter by Flow-Injection Analysis with Electrochemical Detection. Walpen N; Schroth MH; Sander M Environ Sci Technol; 2016 Jun; 50(12):6423-32. PubMed ID: 27227422 [TBL] [Abstract][Full Text] [Related]
3. Loss and Increase of the Electron Exchange Capacity of Natural Organic Matter during Its Reduction and Reoxidation: The Role of Quinone and Nonquinone Moieties. Yang P; Jiang T; Cong Z; Liu G; Guo Y; Liu Y; Shi J; Hu L; Yin Y; Cai Y; Jiang G Environ Sci Technol; 2022 May; 56(10):6744-6753. PubMed ID: 35522821 [TBL] [Abstract][Full Text] [Related]
4. Variations of inorganic ions and dissolved organic matter in different types of peat bogs and its ecological significance. Deng SY; Chen YB; Yu K; Yu ZG Ying Yong Sheng Tai Xue Bao; 2021 Feb; 32(2):571-580. PubMed ID: 33650367 [TBL] [Abstract][Full Text] [Related]
5. Oxidation of Reduced Peat Particulate Organic Matter by Dissolved Oxygen: Quantification of Apparent Rate Constants in the Field. Walpen N; Lau MP; Fiskal A; Getzinger GJ; Meyer SA; Nelson TF; Lever MA; Schroth MH; Sander M Environ Sci Technol; 2018 Oct; 52(19):11151-11160. PubMed ID: 30170488 [TBL] [Abstract][Full Text] [Related]
6. Two analytical approaches quantifying the electron donating capacities of dissolved organic matter to monitor its oxidation during chlorination and ozonation. Önnby L; Walpen N; Salhi E; Sander M; von Gunten U Water Res; 2018 Nov; 144():677-689. PubMed ID: 30096693 [TBL] [Abstract][Full Text] [Related]
7. Iron-organic matter complexes accelerate microbial iron cycling in an iron-rich fen. Kügler S; Cooper RE; Wegner CE; Mohr JF; Wichard T; Küsel K Sci Total Environ; 2019 Jan; 646():972-988. PubMed ID: 30235650 [TBL] [Abstract][Full Text] [Related]
8. Enzyme adaptation in Sphagnum peatlands questions the significance of dissolved organic matter in enzyme inhibition. Hájek T; Urbanová Z Sci Total Environ; 2024 Feb; 911():168685. PubMed ID: 38000758 [TBL] [Abstract][Full Text] [Related]
9. Ozone and chlorine reactions with dissolved organic matter - Assessment of oxidant-reactive moieties by optical measurements and the electron donating capacities. Önnby L; Salhi E; McKay G; Rosario-Ortiz FL; von Gunten U Water Res; 2018 Nov; 144():64-75. PubMed ID: 30014980 [TBL] [Abstract][Full Text] [Related]
10. Redox Properties of Pyrogenic Dissolved Organic Matter (pyDOM) from Biomass-Derived Chars. Xu W; Walpen N; Keiluweit M; Kleber M; Sander M Environ Sci Technol; 2021 Aug; 55(16):11434-11444. PubMed ID: 34319700 [TBL] [Abstract][Full Text] [Related]
11. Copper Safeguards Dissolved Organic Matter from Sunlight-Driven Photooxidation. Pan Y; Garg S; Fu QL; Peng J; Yang X; Waite TD Environ Sci Technol; 2023 Dec; 57(50):21178-21189. PubMed ID: 38064756 [TBL] [Abstract][Full Text] [Related]
12. Oxidant-reactive carbonous moieties in dissolved organic matter: Selective quantification by oxidative titration using chlorine dioxide and ozone. Houska J; Salhi E; Walpen N; von Gunten U Water Res; 2021 Dec; 207():117790. PubMed ID: 34740166 [TBL] [Abstract][Full Text] [Related]
13. Quinone Moieties Link the Microbial Respiration of Natural Organic Matter to the Chemical Reduction of Diverse Nitroaromatic Compounds. Menezes O; Kocaman K; Wong S; Rios-Valenciana EE; Baker EJ; Hatt JK; Zhao J; Madeira CL; Krzmarzick MJ; Spain JC; Sierra-Alvarez R; Konstantinidis KT; Field JA Environ Sci Technol; 2022 Jul; 56(13):9387-9397. PubMed ID: 35704431 [TBL] [Abstract][Full Text] [Related]
14. Elucidating the role of electron shuttles in reductive transformations in anaerobic sediments. Zhang H; Weber EJ Environ Sci Technol; 2009 Feb; 43(4):1042-8. PubMed ID: 19320155 [TBL] [Abstract][Full Text] [Related]
15. Evaluating oxidation-reduction properties of dissolved organic matter from Chinese milk vetch (Astragalus sinicus L.): a comprehensive multi-parametric study. Liu Y; Lou J; Li FB; Xu JM; Yu XS; Zhu LA; Wang F Environ Technol; 2014 Aug; 35(13-16):1916-27. PubMed ID: 24956785 [TBL] [Abstract][Full Text] [Related]
16. Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Cory RM; McKnight DM Environ Sci Technol; 2005 Nov; 39(21):8142-9. PubMed ID: 16294847 [TBL] [Abstract][Full Text] [Related]
17. Dark formation of hydroxyl radical in Arctic soil and surface waters. Page SE; Kling GW; Sander M; Harrold KH; Logan JR; McNeill K; Cory RM Environ Sci Technol; 2013 Nov; 47(22):12860-7. PubMed ID: 24111975 [TBL] [Abstract][Full Text] [Related]
18. Chemical oxidation of dissolved organic matter by chlorine dioxide, chlorine, and ozone: effects on its optical and antioxidant properties. Wenk J; Aeschbacher M; Salhi E; Canonica S; von Gunten U; Sander M Environ Sci Technol; 2013 Oct; 47(19):11147-56. PubMed ID: 23978074 [TBL] [Abstract][Full Text] [Related]
19. Antioxidant properties of humic substances. Aeschbacher M; Graf C; Schwarzenbach RP; Sander M Environ Sci Technol; 2012 May; 46(9):4916-25. PubMed ID: 22463073 [TBL] [Abstract][Full Text] [Related]
20. Reduction-oxidation cycles of organic matter increase bacterial activity in the pelagic oxycline. Lau MP; Hupfer M; Grossart HP Environ Microbiol Rep; 2017 Jun; 9(3):257-267. PubMed ID: 28217926 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]