These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

603 related articles for article (PubMed ID: 29634438)

  • 1. Coronary CT Angiography-derived Fractional Flow Reserve: Machine Learning Algorithm versus Computational Fluid Dynamics Modeling.
    Tesche C; De Cecco CN; Baumann S; Renker M; McLaurin TW; Duguay TM; Bayer RR; Steinberg DH; Grant KL; Canstein C; Schwemmer C; Schoebinger M; Itu LM; Rapaka S; Sharma P; Schoepf UJ
    Radiology; 2018 Jul; 288(1):64-72. PubMed ID: 29634438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gender differences in the diagnostic performance of machine learning coronary CT angiography-derived fractional flow reserve -results from the MACHINE registry.
    Baumann S; Renker M; Schoepf UJ; De Cecco CN; Coenen A; De Geer J; Kruk M; Kim YH; Albrecht MH; Duguay TM; Jacobs BE; Bayer RR; Litwin SE; Weiss C; Akin I; Borggrefe M; Yang DH; Kepka C; Persson A; Nieman K; Tesche C
    Eur J Radiol; 2019 Oct; 119():108657. PubMed ID: 31521876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlation of machine learning computed tomography-based fractional flow reserve with instantaneous wave free ratio to detect hemodynamically significant coronary stenosis.
    Baumann S; Hirt M; Schoepf UJ; Rutsch M; Tesche C; Renker M; Golden JW; Buss SJ; Becher T; Bojara W; Weiss C; Papavassiliu T; Akin I; Borggrefe M; Schoenberg SO; Haubenreisser H; Overhoff D; Lossnitzer D
    Clin Res Cardiol; 2020 Jun; 109(6):735-745. PubMed ID: 31664509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial intelligence machine learning-based coronary CT fractional flow reserve (CT-FFR
    Mastrodicasa D; Albrecht MH; Schoepf UJ; Varga-Szemes A; Jacobs BE; Gassenmaier S; De Santis D; Eid MH; van Assen M; Tesche C; Mantini C; De Cecco CN
    J Cardiovasc Comput Tomogr; 2019; 13(6):331-335. PubMed ID: 30391256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coronary CT angiography-derived plaque quantification with artificial intelligence CT fractional flow reserve for the identification of lesion-specific ischemia.
    von Knebel Doeberitz PL; De Cecco CN; Schoepf UJ; Duguay TM; Albrecht MH; van Assen M; Bauer MJ; Savage RH; Pannell JT; De Santis D; Johnson AA; Varga-Szemes A; Bayer RR; Schönberg SO; Nance JW; Tesche C
    Eur Radiol; 2019 May; 29(5):2378-2387. PubMed ID: 30523456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CT Angiography for the Prediction of Hemodynamic Significance in Intermediate and Severe Lesions: Head-to-Head Comparison With Quantitative Coronary Angiography Using Fractional Flow Reserve as the Reference Standard.
    Budoff MJ; Nakazato R; Mancini GB; Gransar H; Leipsic J; Berman DS; Min JK
    JACC Cardiovasc Imaging; 2016 May; 9(5):559-64. PubMed ID: 26897669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of Hemodynamically Significant Coronary Stenosis: CT Myocardial Perfusion versus Machine Learning CT Fractional Flow Reserve.
    Li Y; Yu M; Dai X; Lu Z; Shen C; Wang Y; Lu B; Zhang J
    Radiology; 2019 Nov; 293(2):305-314. PubMed ID: 31549943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of machine learning-based CT fractional flow reserve with cardiac MR perfusion mapping for ischemia diagnosis in stable coronary artery disease.
    Guo W; Zhao S; Xu H; He W; Yin L; Yao Z; Xu Z; Jin H; Wu D; Li C; Yang S; Zeng M
    Eur Radiol; 2024 Sep; 34(9):5654-5665. PubMed ID: 38409549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of iterative reconstruction algorithms on machine learning-based coronary CT angiography-derived fractional flow reserve (CT-FFR
    Li S; Chen C; Qin L; Gu S; Zhang H; Yan F; Yang W
    Int J Cardiovasc Imaging; 2020 Jun; 36(6):1177-1185. PubMed ID: 32130576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diagnostic Accuracy of a Machine-Learning Approach to Coronary Computed Tomographic Angiography-Based Fractional Flow Reserve: Result From the MACHINE Consortium.
    Coenen A; Kim YH; Kruk M; Tesche C; De Geer J; Kurata A; Lubbers ML; Daemen J; Itu L; Rapaka S; Sharma P; Schwemmer C; Persson A; Schoepf UJ; Kepka C; Hyun Yang D; Nieman K
    Circ Cardiovasc Imaging; 2018 Jun; 11(6):e007217. PubMed ID: 29914866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of Coronary Computed Tomography Angiography-Derived vs Invasive Fractional Flow Reserve Assessment: Meta-Analysis with Subgroup Evaluation of Intermediate Stenosis.
    Baumann S; Renker M; Hetjens S; Fuller SR; Becher T; Loßnitzer D; Lehmann R; Akin I; Borggrefe M; Lang S; Wichmann JL; Schoepf UJ
    Acad Radiol; 2016 Nov; 23(11):1402-1411. PubMed ID: 27639627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noninvasive diagnosis of ischemia-causing coronary stenosis using CT angiography: diagnostic value of transluminal attenuation gradient and fractional flow reserve computed from coronary CT angiography compared to invasively measured fractional flow reserve.
    Yoon YE; Choi JH; Kim JH; Park KW; Doh JH; Kim YJ; Koo BK; Min JK; Erglis A; Gwon HC; Choe YH; Choi DJ; Kim HS; Oh BH; Park YB
    JACC Cardiovasc Imaging; 2012 Nov; 5(11):1088-96. PubMed ID: 23153908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diagnostic performance of fractional flow reserve derived from coronary CT angiography for detection of lesion-specific ischemia: A multi-center study and meta-analysis.
    Tang CX; Wang YN; Zhou F; Schoepf UJ; Assen MV; Stroud RE; Li JH; Zhang XL; Lu MJ; Zhou CS; Zhang DM; Yi Y; Yan J; Lu GM; Xu L; Zhang LJ
    Eur J Radiol; 2019 Jul; 116():90-97. PubMed ID: 31153580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coronary CT angiography derived morphological and functional quantitative plaque markers correlated with invasive fractional flow reserve for detecting hemodynamically significant stenosis.
    Tesche C; De Cecco CN; Caruso D; Baumann S; Renker M; Mangold S; Dyer KT; Varga-Szemes A; Baquet M; Jochheim D; Ebersberger U; Bayer RR; Hoffmann E; Steinberg DH; Schoepf UJ
    J Cardiovasc Comput Tomogr; 2016; 10(3):199-206. PubMed ID: 26993434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diagnostic performance of machine-learning-based computed fractional flow reserve (FFR) derived from coronary computed tomography angiography for the assessment of myocardial ischemia verified by invasive FFR.
    Hu X; Yang M; Han L; Du Y
    Int J Cardiovasc Imaging; 2018 Dec; 34(12):1987-1996. PubMed ID: 30062537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Incremental Value of Subtended Myocardial Mass for Identifying FFR-Verified Ischemia Using Quantitative CT Angiography: Comparison With Quantitative Coronary Angiography and CT-FFR.
    Yang DH; Kang SJ; Koo HJ; Kweon J; Kang JW; Lim TH; Jung J; Kim N; Lee JG; Han S; Ahn JM; Park DW; Lee SW; Lee CW; Park SW; Park SJ; Mintz GS; Kim YH
    JACC Cardiovasc Imaging; 2019 Apr; 12(4):707-717. PubMed ID: 29361491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coronary Computed Tomographic Angiography-Derived Fractional Flow Reserve Based on Machine Learning for Risk Stratification of Non-Culprit Coronary Narrowings in Patients with Acute Coronary Syndrome.
    Duguay TM; Tesche C; Vliegenthart R; De Cecco CN; Lin H; Albrecht MH; Varga-Szemes A; De Santis D; Ebersberger U; Bayer RR; Litwin SE; Hoffmann E; Steinberg DH; Schoepf UJ
    Am J Cardiol; 2017 Oct; 120(8):1260-1266. PubMed ID: 28844517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stable patients with suspected myocardial ischemia: comparison of machine-learning computed tomography-based fractional flow reserve and stress perfusion cardiovascular magnetic resonance imaging to detect myocardial ischemia.
    Lossnitzer D; Klenantz S; Andre F; Goerich J; Schoepf UJ; Pazzo KL; Sommer A; Brado M; Gückel F; Sokiranski R; Becher T; Akin I; Buss SJ; Baumann S
    BMC Cardiovasc Disord; 2022 Feb; 22(1):34. PubMed ID: 35120459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Coronary Calcium on Diagnostic Performance of Machine Learning CT-FFR: Results From MACHINE Registry.
    Tesche C; Otani K; De Cecco CN; Coenen A; De Geer J; Kruk M; Kim YH; Albrecht MH; Baumann S; Renker M; Bayer RR; Duguay TM; Litwin SE; Varga-Szemes A; Steinberg DH; Yang DH; Kepka C; Persson A; Nieman K; Schoepf UJ
    JACC Cardiovasc Imaging; 2020 Mar; 13(3):760-770. PubMed ID: 31422141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of coronary calcium score and lesion characteristics on the diagnostic performance of machine-learning-based computed tomography-derived fractional flow reserve.
    Koo HJ; Kang JW; Kang SJ; Kweon J; Lee JG; Ahn JM; Park DW; Lee SW; Lee CW; Park SW; Park SJ; Kim YH; Yang DH
    Eur Heart J Cardiovasc Imaging; 2021 Aug; 22(9):998-1006. PubMed ID: 33842953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.