BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 29634488)

  • 1. Characterization of the exradin W1 plastic scintillation detector for small field applications in proton therapy.
    Hoehr C; Lindsay C; Beaudry J; Penner C; Strgar V; Lee R; Duzenli C
    Phys Med Biol; 2018 May; 63(9):095016. PubMed ID: 29634488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exradin W1 plastic scintillation detector for in vivo skin dosimetry in passive scattering proton therapy.
    Alsanea F; Wootton L; Sahoo N; Kudchadker R; Mahmood U; Beddar S
    Phys Med; 2018 Mar; 47():58-63. PubMed ID: 29609819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing the response of miniature scintillation detectors when irradiated with proton beams.
    Archambault L; Polf JC; Beaulieu L; Beddar S
    Phys Med Biol; 2008 Apr; 53(7):1865-76. PubMed ID: 18364543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the plastic scintillation detector Exradin W2 for small field dosimetry.
    Galavis PE; Hu L; Holmes S; Das IJ
    Med Phys; 2019 May; 46(5):2468-2476. PubMed ID: 30897221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dosimetric characterization and behaviour in small X-ray fields of a microchamber and a plastic scintillator detector.
    Pasquino M; Cutaia C; Radici L; Valzano S; Gino E; Cavedon C; Stasi M
    Br J Radiol; 2017 Jan; 90(1069):20160596. PubMed ID: 27826990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Passively scattered proton beam entrance dosimetry with a plastic scintillation detector.
    Wootton L; Holmes C; Sahoo N; Beddar S
    Phys Med Biol; 2015 Feb; 60(3):1185-98. PubMed ID: 25591037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The practical application of scintillation dosimetry in small-field photon-beam radiotherapy.
    Burke E; Poppinga D; Schönfeld AA; Harder D; Poppe B; Looe HK
    Z Med Phys; 2017 Dec; 27(4):324-333. PubMed ID: 28342596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Small field dose measurements using plastic scintillation detector in heterogeneous media.
    Xue J; McKay JD; Grimm J; Cheng CW; Berg R; Grimm SL; Xu Q; Subedi G; Das IJ
    Med Phys; 2017 Jul; 44(7):3815-3820. PubMed ID: 28398596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental investigation on the accuracy of plastic scintillators and of the spectrum discrimination method in small photon fields.
    Papaconstadopoulos P; Archambault L; Seuntjens J
    Med Phys; 2017 Feb; 44(2):654-664. PubMed ID: 27997030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. THE USE OF THE EXRADIN W1 PLASTIC SCINTILLATOR FOR MEASUREMENTS IN EXTERNAL RADIOTHERAPY.
    Koniarová I; Konček O
    Radiat Prot Dosimetry; 2019 Dec; 186(2-3):351-356. PubMed ID: 31769483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of the quenching correction factors for plastic scintillation detectors in therapeutic high-energy proton beams.
    Wang LL; Perles LA; Archambault L; Sahoo N; Mirkovic D; Beddar S
    Phys Med Biol; 2012 Dec; 57(23):7767-81. PubMed ID: 23128412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new water-equivalent 2D plastic scintillation detectors array for the dosimetry of megavoltage energy photon beams in radiation therapy.
    Guillot M; Beaulieu L; Archambault L; Beddar S; Gingras L
    Med Phys; 2011 Dec; 38(12):6763-74. PubMed ID: 22149858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a plastic scintillating detector for the Small Animal Radiation Research Platform (SARRP).
    Johnstone CD; Therriault-Proulx F; Beaulieu L; Bazalova-Carter M
    Med Phys; 2019 Jan; 46(1):394-404. PubMed ID: 30417377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of the Exradin W1 scintillator to determine Ediode 60017 and microDiamond 60019 correction factors for relative dosimetry within small MV and FFF fields.
    Underwood TS; Rowland BC; Ferrand R; Vieillevigne L
    Phys Med Biol; 2015 Sep; 60(17):6669-83. PubMed ID: 26271097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feasibility study of a plastic scintillating plate-based treatment beam fluence monitoring system for use in pencil beam scanning proton therapy.
    Jeong S; Chung K; Ahn SH; Lee B; Seo J; Yoon M
    Med Phys; 2020 Feb; 47(2):703-712. PubMed ID: 31732965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monte Carlo modeling of the influence of strong magnetic fields on the stem-effect in plastic scintillation detectors used in radiotherapy dosimetry.
    Simiele E; Viscariello N; DeWerd L
    Med Phys; 2021 Mar; 48(3):1381-1394. PubMed ID: 33283279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative study of small field total scatter factors and dose profiles using plastic scintillation detectors and other stereotactic dosimeters: the case of the CyberKnife.
    Morin J; Beliveau-Nadeau D; Chung E; Seuntjens J; Theriault D; Archambault L; Beddar S; Beaulieu L
    Med Phys; 2013 Jan; 40(1):011719. PubMed ID: 23298089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quality assurance in proton beam therapy using a plastic scintillator and a commercially available digital camera.
    Almurayshid M; Helo Y; Kacperek A; Griffiths J; Hebden J; Gibson A
    J Appl Clin Med Phys; 2017 Sep; 18(5):210-219. PubMed ID: 28755419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-resolved diode dosimetry calibration through Monte Carlo modeling for in vivo passive scattered proton therapy range verification.
    Toltz A; Hoesl M; Schuemann J; Seuntjens J; Lu HM; Paganetti H
    J Appl Clin Med Phys; 2017 Nov; 18(6):200-205. PubMed ID: 29082601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy dependent response of plastic scintillation detectors to photon radiation of low to medium energy.
    Ebenau M; Radeck D; Bambynek M; Sommer H; Flühs D; Spaan B; Eichmann M
    Med Phys; 2016 Aug; 43(8):4598. PubMed ID: 27487876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.