BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 29634792)

  • 1. Reducing Arsenic Concentration in Panax notoginseng via Contaminant Immobilization in Soil Using Fe-Ce Oxide.
    Lin L; Zhong L; Yan X; Fei Y
    J Environ Qual; 2018 Mar; 47(2):312-317. PubMed ID: 29634792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arsenic stabilization by zero-valent iron, bauxite residue, and zeolite at a contaminated site planting Panax notoginseng.
    Yan XL; Lin LY; Liao XY; Zhang WB; Wen Y
    Chemosphere; 2013 Oct; 93(4):661-7. PubMed ID: 23871591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Accumulation of soil arsenic by Panax notoginseng and its associated health risk].
    Yan XL; Liao XY; Yu BB; Zhang WB
    Huan Jing Ke Xue; 2011 Mar; 32(3):880-5. PubMed ID: 21634192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Stabilizing Effects of Fe-Ce Oxide on Soil As(Ⅴ) and P].
    Lin LY; Yan XL; Yang S
    Huan Jing Ke Xue; 2019 Aug; 40(8):3785-3791. PubMed ID: 31854788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impacts of silicon addition on arsenic fractionation in soils and arsenic speciation in Panax notoginseng planted in soils contaminated with high levels of arsenic.
    Yang Y; Zhang A; Chen Y; Liu J; Cao H
    Ecotoxicol Environ Saf; 2018 Oct; 162():400-407. PubMed ID: 30015185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of manganese oxide-modified biochar composites on arsenic speciation and accumulation in an indica rice (Oryza sativa L.) cultivar.
    Yu Z; Qiu W; Wang F; Lei M; Wang D; Song Z
    Chemosphere; 2017 Feb; 168():341-349. PubMed ID: 27810533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pesticide residues in soils planted with Panax notoginseng in south China, and their relationships in Panax notoginseng and soil.
    Zhao L; Li Y; Ren W; Huang Y; Wang X; Fu Z; Ma W; Teng Y; Luo Y
    Ecotoxicol Environ Saf; 2020 Sep; 201():110783. PubMed ID: 32534333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduction, methylation, and translocation of arsenic in Panax notoginseng grown under field conditions in arsenic-contaminated soils.
    Ma J; Mi Y; Li Q; Chen L; Du L; He L; Lei M
    Sci Total Environ; 2016 Apr; 550():893-899. PubMed ID: 26851761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of an iron-silicon material, a synthetic zeolite and an alkaline clay on vegetable uptake of As and Cd from a polluted agricultural soil and proposed remediation mechanisms.
    Yao A; Wang Y; Ling X; Chen Z; Tang Y; Qiu H; Ying R; Qiu R
    Environ Geochem Health; 2017 Apr; 39(2):353-367. PubMed ID: 27530933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soil-Plant Metal Relations in Panax notoginseng: An Ecosystem Health Risk Assessment.
    Ou X; Wang L; Guo L; Cui X; Liu D; Yang Y
    Int J Environ Res Public Health; 2016 Nov; 13(11):. PubMed ID: 27827951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochar increases arsenic release from an anaerobic paddy soil due to enhanced microbial reduction of iron and arsenic.
    Wang N; Xue XM; Juhasz AL; Chang ZZ; Li HB
    Environ Pollut; 2017 Jan; 220(Pt A):514-522. PubMed ID: 27720546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic accumulation and resistance mechanism in Panax notoginseng, a traditional rare medicinal herb.
    Yan XL; Lin LY; Liao XY; Zhang WB
    Chemosphere; 2012 Mar; 87(1):31-6. PubMed ID: 22189375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of different cleaning treatments on heavy metal removal of Panax notoginseng (Burk) F. H. Chen.
    Dahui L; Na X; Li W; Xiuming C; Lanping G; Zhihui Z; Jiajin W; Ye Y
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2014; 31(12):2004-13. PubMed ID: 25315359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arsenic mobility and bioavailability in paddy soil under iron compound amendments at different growth stages of rice.
    Yu HY; Wang X; Li F; Li B; Liu C; Wang Q; Lei J
    Environ Pollut; 2017 May; 224():136-147. PubMed ID: 28202263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Investigation and analysis of heavy metal pollution related to soil-Panax notoginseng system].
    Chen L; Mi YH; Lin X; Liu DH; Zeng M; Chen XY
    Zhongguo Zhong Yao Za Zhi; 2014 Jul; 39(14):2608-13. PubMed ID: 25272482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic effects of the combination of oxalate and ascorbate on arsenic extraction from contaminated soils.
    Lee JC; Kim EJ; Baek K
    Chemosphere; 2017 Feb; 168():1439-1446. PubMed ID: 27923505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of biosolid incorporation on arsenic distribution in Mollisol soils in central Chile.
    Ascar L; Ahumada I; Richter P
    Chemosphere; 2008 Jan; 70(7):1211-7. PubMed ID: 17889255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduced arsenic accumulation in indica rice (Oryza sativa L.) cultivar with ferromanganese oxide impregnated biochar composites amendments.
    Lin L; Gao M; Qiu W; Wang D; Huang Q; Song Z
    Environ Pollut; 2017 Dec; 231(Pt 1):479-486. PubMed ID: 28841500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Field trials to assess the uptake of arsenic by vegetables from contaminated soils and soil remediation with iron oxides.
    Warren GP; Alloway BJ; Lepp NW; Singh B; Bochereau FJ; Penny C
    Sci Total Environ; 2003 Jul; 311(1-3):19-33. PubMed ID: 12826380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergic use of chemical and ecotoxicological tools for evaluating multi-contaminated soils amended with iron oxides-rich materials.
    Manzano R; Jiménez-Peñalver P; Esteban E
    Ecotoxicol Environ Saf; 2017 Jul; 141():251-258. PubMed ID: 28359991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.