These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 29634794)

  • 1. Sorption of Nitro Explosives to Polymer/Biomass-Derived Biochar.
    Oh SY; Seo YD; Jeong TY; Kim SD
    J Environ Qual; 2018 Mar; 47(2):353-360. PubMed ID: 29634794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Factors affecting sorption of nitro explosives to biochar: pyrolysis temperature, surface treatment, competition, and dissolved metals.
    Oh SY; Seo YD
    J Environ Qual; 2015 May; 44(3):833-40. PubMed ID: 26024263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factors affecting the sorption of halogenated phenols onto polymer/biomass-derived biochar: Effects of pH, hydrophobicity, and deprotonation.
    Oh SY; Seo YD
    J Environ Manage; 2019 Feb; 232():145-152. PubMed ID: 30472557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox and catalytic properties of biochar-coated zero-valent iron for the removal of nitro explosives and halogenated phenols.
    Oh SY; Seo YD; Ryu KS; Park DJ; Lee SH
    Environ Sci Process Impacts; 2017 May; 19(5):711-719. PubMed ID: 28394378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymer/biomass-derived biochar for use as a sorbent and electron transfer mediator in environmental applications.
    Oh SY; Seo YD
    Bioresour Technol; 2016 Oct; 218():77-83. PubMed ID: 27347801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochar Amendment for Reducing Leachability of Nitro Explosives and Metals from Contaminated Soils and Mine Tailings.
    Oh SY; Yoon HS
    J Environ Qual; 2016 May; 45(3):993-1002. PubMed ID: 27136167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sorptive removal of nitro explosives and metals using biochar.
    Oh SY; Seo YD
    J Environ Qual; 2014 Sep; 43(5):1663-71. PubMed ID: 25603252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochar-mediated reductive transformation of nitro herbicides and explosives.
    Oh SY; Son JG; Chiu PC
    Environ Toxicol Chem; 2013 Mar; 32(3):501-8. PubMed ID: 23334991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sorption of halogenated phenols and pharmaceuticals to biochar: affecting factors and mechanisms.
    Oh SY; Seo YD
    Environ Sci Pollut Res Int; 2016 Jan; 23(2):951-61. PubMed ID: 25687609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissolution, sorption, and kinetics involved in systems containing explosives, water, and soil.
    Larson SL; Martin WA; Escalon BL; Thompson M
    Environ Sci Technol; 2008 Feb; 42(3):786-92. PubMed ID: 18323103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissolution and sorption of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene (TNT) residues from detonated mineral surfaces.
    Jaramillo AM; Douglas TA; Walsh ME; Trainor TP
    Chemosphere; 2011 Aug; 84(8):1058-65. PubMed ID: 21601233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sorption kinetics of TNT and RDX in anaerobic freshwater and marine sediments: Batch studies.
    Ariyarathna T; Vlahos P; Tobias C; Smith R
    Environ Toxicol Chem; 2016 Jan; 35(1):47-55. PubMed ID: 26178383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sorption of high explosives to water-dispersible clay: influence of organic carbon, aluminosilicate clay, and extractable iron.
    Dontsova KM; Hayes C; Pennington JC; Porter B
    J Environ Qual; 2009; 38(4):1458-65. PubMed ID: 19465721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrogen enrichment potential of biochar in relation to pyrolysis temperature and feedstock quality.
    Jassal RS; Johnson MS; Molodovskaya M; Black TA; Jollymore A; Sveinson K
    J Environ Manage; 2015 Apr; 152():140-4. PubMed ID: 25621388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sorption of sulphamethoxazole by the biochars derived from rice straw and alligator flag.
    Li T; Han X; Liang C; Shohag MJ; Yang X
    Environ Technol; 2015; 36(1-4):245-53. PubMed ID: 25413119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy recovery and waste treatment using the co-pyrolysis of biomass waste and polymer.
    Oh SY; Sohn JI
    Waste Manag Res; 2022 Nov; 40(11):1637-1644. PubMed ID: 35642625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochar efficiency in pesticides sorption as a function of production variables--a review.
    Yavari S; Malakahmad A; Sapari NB
    Environ Sci Pollut Res Int; 2015 Sep; 22(18):13824-41. PubMed ID: 26250816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accumulation of explosives in hair--part II: factors affecting sorption.
    Oxley JC; Smith JL; Kirschenbaum LJ; Marimganti S
    J Forensic Sci; 2007 Nov; 52(6):1291-6. PubMed ID: 18093063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sorption of tetracycline on H
    Chen T; Luo L; Deng S; Shi G; Zhang S; Zhang Y; Deng O; Wang L; Zhang J; Wei L
    Bioresour Technol; 2018 Nov; 267():431-437. PubMed ID: 30032057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The structure evolution of biochar from biomass pyrolysis and its correlation with gas pollutant adsorption performance.
    Chen Y; Zhang X; Chen W; Yang H; Chen H
    Bioresour Technol; 2017 Dec; 246():101-109. PubMed ID: 28893501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.