BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 29634798)

  • 1. Influence of Vegetation on Long-term Phosphorus Sequestration in Subtropical Treatment Wetlands.
    Bhomia RK; Reddy KR
    J Environ Qual; 2018 Mar; 47(2):361-370. PubMed ID: 29634798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organic phosphorus sequestration in subtropical treatment wetlands.
    Turner BL; Newman S; Newman JM
    Environ Sci Technol; 2006 Feb; 40(3):727-33. PubMed ID: 16509310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatiotemporal changes in soil phosphorus characteristics in a submerged aquatic vegetation-dominated treatment wetland.
    Zamorano MF; Bhomia RK; Chimney MJ; Ivanoff D
    J Environ Manage; 2018 Dec; 228():363-372. PubMed ID: 30241041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soil phosphorus forms and storage in stormwater treatment areas of the Everglades: Influence of vegetation and nutrient loading.
    Reddy KR; Vardanyan L; Hu J; Villapando O; Bhomia RK; Smith T; Harris WG; Newman S
    Sci Total Environ; 2020 Jul; 725():138442. PubMed ID: 32464752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wetland phosphorus dynamics and phosphorus removal potential.
    Skinner M
    Water Environ Res; 2022 Oct; 94(10):e10799. PubMed ID: 36259138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Progress in the research and demonstration of Everglades periphyton-based stormwater treatment areas.
    Bays JS; Knight RL; Wenkert L; Clarke R; Gong S
    Water Sci Technol; 2001; 44(11-12):123-30. PubMed ID: 11804083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of phosphorus retention in a South Florida treatment wetland.
    Nungesser MK; Chimney MJ
    Water Sci Technol; 2001; 44(11-12):109-15. PubMed ID: 11804081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Submerged aquatic vegetation-based treatment wetlands for removing phosphorus from agricultural runoff: response to hydraulic and nutrient loading.
    Dierberg FE; DeBusk TA; Jackson SD; Chimney MJ; Pietro K
    Water Res; 2002 Mar; 36(6):1409-22. PubMed ID: 11996331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Negative effects of excessive soil phosphorus on floristic quality in Ohio wetlands.
    Stapanian MA; Schumacher W; Gara B; Monteith SE
    Sci Total Environ; 2016 May; 551-552():556-62. PubMed ID: 26896584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of nutrients in various types of constructed wetlands.
    Vymazal J
    Sci Total Environ; 2007 Jul; 380(1-3):48-65. PubMed ID: 17078997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding stoichiometric mechanisms of nutrient retention in wetland macrophytes: stoichiometric homeostasis along a nutrient gradient in a subtropical wetland.
    Julian P; Gerber S; Bhomia RK; King J; Osborne TZ; Wright AL
    Oecologia; 2020 Aug; 193(4):969-980. PubMed ID: 32725299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soil and phosphorus accretion rates in sub-tropical wetlands: Everglades Stormwater Treatment Areas as a case example.
    Bhomia RK; Inglett PW; Reddy KR
    Sci Total Environ; 2015 Nov; 533():297-306. PubMed ID: 26172597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Connecting carbon and nitrogen storage in rural wetland soil to groundwater abstraction for urban water supply.
    Lewis DB; Feit SJ
    Glob Chang Biol; 2015 Apr; 21(4):1704-14. PubMed ID: 25394332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorus retention within a relic agricultural ditch in a constructed wetland.
    Duersch BG; Powers MO; Newman S; Ricca JG; Bhadha JH; Louda JW
    J Environ Qual; 2021 Sep; 50(5):1171-1183. PubMed ID: 34337746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reducing phosphorus flux from organic soils in surface flow treatment wetlands.
    Lindstrom SM; White JR
    Chemosphere; 2011 Oct; 85(4):625-9. PubMed ID: 21802114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal and spatial patterns of internal phosphorus recycling in a South Florida (USA) stormwater treatment area.
    Dierberg FE; DeBusk TA; Henry JL; Jackson SD; Galloway S; Gabriel MC
    J Environ Qual; 2012; 41(5):1661-73. PubMed ID: 23099958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effectiveness of vegetation on phosphorus removal from reclaimed water by a subsurface flow wetland in a coastal area.
    Shan B; Ao L; Hu C; Song J
    J Environ Sci (China); 2011; 23(10):1594-9. PubMed ID: 22432252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soil biogeochemical characteristics influenced by alum application in a municipal wastewater treatment wetland.
    Malecki-Brown LM; White JR; Reddy KR
    J Environ Qual; 2007; 36(6):1904-13. PubMed ID: 17965393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorus transformations during decomposition of wetland macrophytes.
    Cheesman AW; Turner BL; Inglett PW; Reddy KR
    Environ Sci Technol; 2010 Dec; 44(24):9265-71. PubMed ID: 21090603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wetland buffer zones for nitrogen and phosphorus retention: Impacts of soil type, hydrology and vegetation.
    Walton CR; Zak D; Audet J; Petersen RJ; Lange J; Oehmke C; Wichtmann W; Kreyling J; Grygoruk M; Jabłońska E; Kotowski W; Wiśniewska MM; Ziegler R; Hoffmann CC
    Sci Total Environ; 2020 Jul; 727():138709. PubMed ID: 32334232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.