BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 29634976)

  • 1. High expression of synthesis of cytochrome c oxidase 2 and TP53-induced glycolysis and apoptosis regulator can predict poor prognosis in human lung adenocarcinoma.
    Liu J; Lu F; Gong Y; Zhao C; Pan Q; Ballantyne S; Zhao X; Tian S; Chen H
    Hum Pathol; 2018 Jul; 77():54-62. PubMed ID: 29634976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinctive interrelation of p53 with SCO2, COX, and TIGAR in human gastric cancer.
    Kim SH; Choi SI; Won KY; Lim SJ
    Pathol Res Pract; 2016 Oct; 212(10):904-910. PubMed ID: 27499152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulatory role of p53 in cancer metabolism via SCO2 and TIGAR in human breast cancer.
    Won KY; Lim SJ; Kim GY; Kim YW; Han SA; Song JY; Lee DK
    Hum Pathol; 2012 Feb; 43(2):221-8. PubMed ID: 21820150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two p53-related metabolic regulators, TIGAR and SCO2, contribute to oroxylin A-mediated glucose metabolism in human hepatoma HepG2 cells.
    Dai Q; Yin Y; Liu W; Wei L; Zhou Y; Li Z; You Q; Lu N; Guo Q
    Int J Biochem Cell Biol; 2013 Jul; 45(7):1468-78. PubMed ID: 23612020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acetylation mediated by the p300/CBP-associated factor determines cellular energy metabolic pathways in cancer.
    Rajendran R; Garva R; Ashour H; Leung T; Stratford I; Krstic-Demonacos M; Demonacos C
    Int J Oncol; 2013 Jun; 42(6):1961-72. PubMed ID: 23591450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Upregulation of energy metabolism-related, p53-target TIGAR and SCO2 in HuH-7 cells with p53 mutation by geranylgeranoic acid treatment.
    Iwao C; Shidoji Y
    Biomed Res; 2015; 36(6):371-81. PubMed ID: 26700591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. KRAB-type zinc-finger proteins PITA and PISA specifically regulate p53-dependent glycolysis and mitochondrial respiration.
    Wang S; Peng Z; Wang S; Yang L; Chen Y; Kong X; Song S; Pei P; Tian C; Yan H; Ding P; Hu W; Liu CH; Zhang X; He F; Zhang L
    Cell Res; 2018 May; 28(5):572-592. PubMed ID: 29467382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SCO2 induces p53-mediated apoptosis by Thr845 phosphorylation of ASK-1 and dissociation of the ASK-1-Trx complex.
    Madan E; Gogna R; Kuppusamy P; Bhatt M; Mahdi AA; Pati U
    Mol Cell Biol; 2013 Apr; 33(7):1285-302. PubMed ID: 23319048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of glucose metabolism by p53: emerging new roles for the tumor suppressor.
    Madan E; Gogna R; Bhatt M; Pati U; Kuppusamy P; Mahdi AA
    Oncotarget; 2011 Dec; 2(12):948-57. PubMed ID: 22248668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. p53 Protects lung cancer cells against metabolic stress.
    Sinthupibulyakit C; Ittarat W; St Clair WH; St Clair DK
    Int J Oncol; 2010 Dec; 37(6):1575-81. PubMed ID: 21042727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TCF19 and p53 regulate transcription of TIGAR and SCO2 in HCC for mitochondrial energy metabolism and stress adaptation.
    Mondal P; Gadad SS; Adhikari S; Ramos EI; Sen S; Prasad P; Das C
    FASEB J; 2021 Sep; 35(9):e21814. PubMed ID: 34369624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TP53-induced glycolysis and apoptosis regulator protects from spontaneous apoptosis and predicts poor prognosis in chronic lymphocytic leukemia.
    Hong M; Xia Y; Zhu Y; Zhao HH; Zhu H; Xie Y; Fan L; Wang L; Miao KR; Yu H; Miao YQ; Wu W; Zhu HY; Chen YY; Xu W; Qian SX; Li JY
    Leuk Res; 2016 Nov; 50():72-77. PubMed ID: 27693855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. p53 and TIGAR regulate cardiac myocyte energy homeostasis under hypoxic stress.
    Kimata M; Matoba S; Iwai-Kanai E; Nakamura H; Hoshino A; Nakaoka M; Katamura M; Okawa Y; Mita Y; Okigaki M; Ikeda K; Tatsumi T; Matsubara H
    Am J Physiol Heart Circ Physiol; 2010 Dec; 299(6):H1908-16. PubMed ID: 20935145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TIGAR, a p53-inducible regulator of glycolysis and apoptosis.
    Bensaad K; Tsuruta A; Selak MA; Vidal MN; Nakano K; Bartrons R; Gottlieb E; Vousden KH
    Cell; 2006 Jul; 126(1):107-20. PubMed ID: 16839880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emulsified isoflurane treatment inhibits the cell cycle and respiration of human bronchial epithelial 16HBE cells in a p53-independent manner.
    Yang H; Deng J; Jiang Y; Chen J; Zeng X; He Z; Jiang X; Li Z; Jiang C
    Mol Med Rep; 2016 Jul; 14(1):349-54. PubMed ID: 27176636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of the TP53-induced glycolysis and apoptosis regulator in various stages of colorectal cancer patients.
    Al-Khayal K; Abdulla M; Al-Obeed O; Al Kattan W; Zubaidi A; Vaali-Mohammed MA; Alsheikh A; Ahmad R
    Oncol Rep; 2016 Mar; 35(3):1281-6. PubMed ID: 26675982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of TIGAR Increases Exogenous p53 and Cisplatin Combination Sensitivity in Lung Cancer Cells by Regulating Glycolytic Flux.
    Fu J; Yu S; Zhao X; Zhang C; Shen L; Liu Y; Yu H
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. p53 aerobics: the major tumor suppressor fuels your workout.
    Kruse JP; Gu W
    Cell Metab; 2006 Jul; 4(1):1-3. PubMed ID: 16814724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TIGAR cooperated with glycolysis to inhibit the apoptosis of leukemia cells and associated with poor prognosis in patients with cytogenetically normal acute myeloid leukemia.
    Qian S; Li J; Hong M; Zhu Y; Zhao H; Xie Y; Huang J; Lian Y; Li Y; Wang S; Mao J; Chen Y
    J Hematol Oncol; 2016 Nov; 9(1):128. PubMed ID: 27884166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oncogenic role of the TP53-induced glycolysis and apoptosis regulator in nasopharyngeal carcinoma through NF-κB pathway modulation.
    Zhao M; Fan J; Liu Y; Yu Y; Xu J; Wen Q; Zhang J; Fu S; Wang B; Xiang L; Feng J; Wu J; Yang L
    Int J Oncol; 2016 Feb; 48(2):756-64. PubMed ID: 26691054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.