These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 29635022)

  • 21. Fast spiking interneuron control of seizure propagation in a cortical slice model of focal epilepsy.
    Cammarota M; Losi G; Chiavegato A; Zonta M; Carmignoto G
    J Physiol; 2013 Feb; 591(4):807-22. PubMed ID: 23207591
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hypersynchronous ictal onset in the perirhinal cortex results from dynamic weakening in inhibition.
    Köhling R; D'Antuono M; Benini R; de Guzman P; Avoli M
    Neurobiol Dis; 2016 Mar; 87():1-10. PubMed ID: 26699817
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Antiepileptic drugs abolish ictal but not interictal epileptiform discharges in vitro.
    D'Antuono M; Köhling R; Ricalzone S; Gotman J; Biagini G; Avoli M
    Epilepsia; 2010 Mar; 51(3):423-31. PubMed ID: 19694791
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Single-unit Activity in the in vitro Entorhinal Cortex During Carbachol-induced Field Oscillations.
    Chen LY; Lévesque M; Cataldi M; Avoli M
    Neuroscience; 2018 May; 379():1-12. PubMed ID: 29534974
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fast activity at seizure onset is mediated by inhibitory circuits in the entorhinal cortex in vitro.
    Gnatkovsky V; Librizzi L; Trombin F; de Curtis M
    Ann Neurol; 2008 Dec; 64(6):674-86. PubMed ID: 19107991
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Activation of specific neuronal networks leads to different seizure onset types.
    Shiri Z; Manseau F; Lévesque M; Williams S; Avoli M
    Ann Neurol; 2016 Mar; 79(3):354-65. PubMed ID: 26605509
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Epileptiform ictal discharges are prevented by periodic interictal spiking in the olfactory cortex.
    Librizzi L; de Curtis M
    Ann Neurol; 2003 Mar; 53(3):382-9. PubMed ID: 12601706
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Involvement of amygdala networks in epileptiform synchronization in vitro.
    Benini R; D'Antuono M; Pralong E; Avoli M
    Neuroscience; 2003; 120(1):75-84. PubMed ID: 12849742
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ictal epileptiform activity in the CA3 region of hippocampal slices produced by pilocarpine.
    Rutecki PA; Yang Y
    J Neurophysiol; 1998 Jun; 79(6):3019-29. PubMed ID: 9636105
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of KCC2-dependent potassium efflux in 4-Aminopyridine-induced Epileptiform synchronization.
    González OC; Shiri Z; Krishnan GP; Myers TL; Williams S; Avoli M; Bazhenov M
    Neurobiol Dis; 2018 Jan; 109(Pt A):137-147. PubMed ID: 29045814
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Changes in action potential features during focal seizure discharges in the entorhinal cortex of the in vitro isolated guinea pig brain.
    Trombin F; Gnatkovsky V; de Curtis M
    J Neurophysiol; 2011 Sep; 106(3):1411-23. PubMed ID: 21676935
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hippocampus-entorhinal cortex loop and seizure generation in the young rodent limbic system.
    Calcagnotto ME; Barbarosie M; Avoli M
    J Neurophysiol; 2000 May; 83(5):3183-7. PubMed ID: 10805716
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CA3-released entorhinal seizures disclose dentate gyrus epileptogenicity and unmask a temporoammonic pathway.
    Barbarosie M; Louvel J; Kurcewicz I; Avoli M
    J Neurophysiol; 2000 Mar; 83(3):1115-24. PubMed ID: 10712442
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Participation of GABAA-mediated inhibition in ictallike discharges in the rat entorhinal cortex.
    Lopantsev V; Avoli M
    J Neurophysiol; 1998 Jan; 79(1):352-60. PubMed ID: 9425204
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Study on concordance of ictal and interictal epileptiform activity in patients with tuberous sclerosis complex].
    Yang Z; Guo Q; Zhuang J; Liu X; Xiong H; Wu Y; Wang S; Chang X; Zhang Y; Bao X; Jiang Y; Qin J
    Zhonghua Er Ke Za Zhi; 2014 Apr; 52(4):292-7. PubMed ID: 24915918
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interictal spikes precede ictal discharges in an organotypic hippocampal slice culture model of epileptogenesis.
    Dyhrfjeld-Johnsen J; Berdichevsky Y; Swiercz W; Sabolek H; Staley KJ
    J Clin Neurophysiol; 2010 Dec; 27(6):418-24. PubMed ID: 21076333
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ictal activity is sustained by the estrogen receptor β during the estrous cycle.
    Li FR; Lévesque M; Wang S; Carreño-Muñoz MI; Di Cristo G; Avoli M
    Curr Res Neurobiol; 2024; 6():100131. PubMed ID: 38812499
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Long-duration self-sustained epileptiform activity in the hippocampal-parahippocampal slice: a model of status epilepticus.
    Rafiq A; Zhang YF; DeLorenzo RJ; Coulter DA
    J Neurophysiol; 1995 Nov; 74(5):2028-42. PubMed ID: 8592194
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of the entorhinal cortex in epileptiform activities of the hippocampus.
    Ren H; Shi YJ; Lu QC; Liang PJ; Zhang PM
    Theor Biol Med Model; 2014 Mar; 11():14. PubMed ID: 24656055
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Realistic modeling of entorhinal cortex field potentials and interpretation of epileptic activity in the guinea pig isolated brain preparation.
    Labyt E; Uva L; de Curtis M; Wendling F
    J Neurophysiol; 2006 Jul; 96(1):363-77. PubMed ID: 16598061
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.